A229995 Array of coefficients of numerator polynomials of the rational function p(n, x + 1/x), where p(n,x) is the Fibonacci polynomial defined by p(1,x) = 1, p(2,x) = x, p(n,x) = x*p(n-1,x) + p(n-2,x).
1, 1, 0, 1, 1, 0, 3, 0, 1, 1, 0, 5, 0, 5, 0, 1, 1, 0, 7, 0, 13, 0, 7, 0, 1, 1, 0, 9, 0, 25, 0, 25, 0, 9, 0, 1, 1, 0, 11, 0, 41, 0, 63, 0, 41, 0, 11, 0, 1, 1, 0, 13, 0, 61, 0, 129, 0, 129, 0, 61, 0, 13, 0, 1, 1, 0, 15, 0, 85, 0, 231, 0, 321, 0, 231, 0, 85, 0
Offset: 0
Examples
First 4 rows: 1 1 0 1 1 0 3 0 1 1 0 5 0 5 0 1
Programs
-
Mathematica
p[n_, x_] := p[x] = Fibonacci[n, x]; Table[p[n, x], {n, 1, 10}] f[n_, x_] := f[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x + 1/x]]] g[n_, x_] := g[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x - 1/x]]] h[n_, x_] := h[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x + 1 + 1/x]]] t1 = Flatten[Table[CoefficientList[f[n, x], x], {n, 1, 12}]]; (* A229995 *) t2 = Flatten[Table[CoefficientList[g[n, x], x], {n, 1, 12}]]; (* A230002 *) t3 = Flatten[Table[CoefficientList[h[n, x], x], {n, 1, 12}]]; (* A059317 *)
Comments