cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229995 Array of coefficients of numerator polynomials of the rational function p(n, x + 1/x), where p(n,x) is the Fibonacci polynomial defined by p(1,x) = 1, p(2,x) = x, p(n,x) = x*p(n-1,x) + p(n-2,x).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 3, 0, 1, 1, 0, 5, 0, 5, 0, 1, 1, 0, 7, 0, 13, 0, 7, 0, 1, 1, 0, 9, 0, 25, 0, 25, 0, 9, 0, 1, 1, 0, 11, 0, 41, 0, 63, 0, 41, 0, 11, 0, 1, 1, 0, 13, 0, 61, 0, 129, 0, 129, 0, 61, 0, 13, 0, 1, 1, 0, 15, 0, 85, 0, 231, 0, 321, 0, 231, 0, 85, 0
Offset: 0

Views

Author

Clark Kimberling, Nov 07 2013

Keywords

Comments

Deleting the 0's leaves A008288 (Delannoy numbers as a triangle). Define q(n,x) = p(n, x + 1/x). If r is a zero of p(n,x) then (1/2)*(r +- sqrt(r^2 - 4)) are zeros of q(n,x).

Examples

			First 4 rows:
  1
  1 0 1
  1 0 3 0 1
  1 0 5 0 5 0 1
		

Crossrefs

Programs

  • Mathematica
    p[n_, x_] := p[x] = Fibonacci[n, x]; Table[p[n, x], {n, 1, 10}]
    f[n_, x_] := f[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x + 1/x]]]
    g[n_, x_] := g[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x - 1/x]]]
    h[n_, x_] := h[n, x] = Expand[Numerator[Factor[p[n, x] /. x -> x + 1 + 1/x]]]
    t1 = Flatten[Table[CoefficientList[f[n, x], x], {n, 1, 12}]];  (* A229995 *)
    t2 = Flatten[Table[CoefficientList[g[n, x], x], {n, 1, 12}]];  (* A230002 *)
    t3 = Flatten[Table[CoefficientList[h[n, x], x], {n, 1, 12}]];  (* A059317 *)