A305995 Rectangular array read by downward antidiagonals; row n consists of the numbers m such that n is the denominator of d(k)/d(1) + d(k-1)/d(2) + ... + d(k)/d(1), where d(1),d(2),...,d(k) are the unitary divisors of m.
1, 10, 2, 65, 68, 3, 130, 520, 6, 4, 260, 1768, 15, 40, 5, 340, 2600, 30, 104, 50, 12, 1105, 6760, 60, 1040, 1700, 120, 7, 1972, 17680, 150, 20560, 3250, 312, 14, 8, 2210, 62600, 195, 35360, 7825, 600, 35, 2080, 9, 4420, 165896, 204, 85280, 27625, 3120, 70, 4112, 18, 20
Offset: 1
Examples
Northwest corner: 1 10 65 130 260 340 1105 2 68 520 1768 2600 6760 17680 3 6 15 30 60 150 195 4 40 104 1040 20560 35360 85280 5 50 1700 3250 7825 27625 31300 12 120 312 600 3120 61680 106080 7 14 35 70 140 175 350 8 2080 4112 6560 32800 38048 52000 9 18 90 369 585 612 738
Programs
-
Mathematica
t[n_] := Table[r[n][[k[n] + 1 - i]]/r[n][[k[1] + i - 1]], {i, 1, k[n]}]; s = Table[Total[t[n]], {n, 1, z}]; a[n_] := If[IntegerQ[s[[n]]], 1, 0]; d = Denominator[s]; row[n_] := Flatten[Position[d, n]] TableForm[Table[row[n], {n, 1, 10}]] (* A305995 array *) r1[n_, k_] := row[n][[k]]; zz = 10; Flatten[Table[r1[n - k + 1, k], {n, zz}, {k, n, 1, -1}]] (* A305995 sequence *)
Comments