cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229999 For every positive integer m, let u(m) = (d(1),d(2),...,d(k)) be the unitary divisors of m. The sequence (a(n)) consists of integers of the form d(k)/d(1) + d(k-1)/d(2) + ... + d(k)/d(1).

Original entry on oeis.org

1, 13, 68, 170, 289, 377, 1160, 2105, 2900, 4930, 9425, 10946, 19594, 20740, 33680, 51850, 45385, 52625, 69716, 84200, 83522, 88145, 107848, 143140, 269620, 208520, 226577, 273650, 353800, 458354, 521300, 540985, 568226, 884500, 760328, 832745, 876265
Offset: 1

Views

Author

Clark Kimberling, Oct 31 2013

Keywords

Comments

The values of m for which d(k)/d(1) + d(k-1)/d(2) + ... + d(k)/d(1) is an integer are given by A229996. - Clark Kimberling, Jun 16 2018

Examples

			a(2) = 13 = 10/1 + 5/2 + 2/5 + 1/10.
		

Crossrefs

Programs

  • Mathematica
    z = 10000; r[n_] := r[n] = Select[Divisors[n], GCD[#, n/#] == 1 &];
    k[n_] := f[n] = Length[r[n]]; t[n_] := t[n] = Table[r[n][[k[n] + 1 - i]]/r[n][[k[1] + i - 1]], {i, 1, k[n]}]; s = Table[Plus @@ t[n], {n, 1, z}]; a[n_] := a[n] = If[IntegerQ[s[[n]]], 1, 0]; u = Table[a[n], {n, 1, z}]; v = Flatten[Position[u, 1]]  (* A229996 *)
    s[[v]] (* A229999 *)

Extensions

Definition corrected by Clark Kimberling, Jun 16 2018