cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230000 Triangular array read by rows: row n shows the coefficients of the polynomial u(n) = c(0) + c(1)*x + ... + c(k)*x^k which is the numerator of the n-th convergent of the continued fraction [1, 1/x, 1/x^2, ... ,1/x^n].

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 0, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 2, 1, 2, 1
Offset: 0

Views

Author

Clark Kimberling, Oct 11 2013

Keywords

Comments

In the Name section, k = n(n+1)/2. For the denominator polynomials, see A230001. Conjecture: every nonnegative integer occurs infinitely many times.

Examples

			The first 7 rows:
1 . . . . . . . . . . . . polynomial u(0) = 1
1 1 . . . . . . . . . . . polynomial u(1) = 1 + x
1 1 0 1 . . . . . . . . . u(2) = 1 + x + x^3
1 1 0 1 0 1 1
1 1 0 1 0 1 1 1 1 0 1
1 1 0 1 0 1 1 1 1 1 2 0 1 0 1 1
1 1 0 1 0 1 1 1 1 1 2 1 2 0 2 1 1 1 1 1 0 1
		

Crossrefs

Cf. A230001.

Programs

  • Mathematica
    t[n_] := t[n] = Table[1/x^k, {k, 0, n}];
    b = Table[Factor[Convergents[t[n]]], {n, 0, 10}];
    p[x_, n_] := p[x, n] = Last[Expand[Numerator[b]]][[n]];
    u = Table[p[x, n], {n, 1, 10}]
    v = CoefficientList[u, x]
    Flatten[v]

Formula

Write the numerator polynomials as u(0), u(1), u(2), ... and the denominator polynomials as v(0), v(1), v(2),... Let p(0) = 1, q(0) = 1; p(1) = (1 + x)/x; q(1) = 1/x; p(n ) = p(n-1)/x^n + p(n-2), q(n) = q(n-1)/x^n + q(n-2). Then u(n)/v(n) = p(n)/q(n) for n>=0.