This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230029 #13 Apr 06 2025 19:51:38 %S A230029 3,487,547,877,1063,1291,1579,1657,2287,2797,3343,3793,4909,4957,6163, %T A230029 6571,7393,8461,8521,8563,9631,11257,11863,12211,12757,12907,13063, %U A230029 13567,13999,14983,15427,15739,16087,16651,16699,17419,17713,17977 %N A230029 Primes p such that f(f(p)) is prime, where f(x) = x^4-x^3-x^2-x-1. %e A230029 3 is prime and (3^4-3^3-3^2-3-1)^4 - (3^4-3^3-3^2-3-1)^3 - (3^4-3^3-3^2-3-1)^2 - (3^4-3^3-3^2-3-1) - 1 = 2755117 is prime. Thus, 3 is a member of this sequence. %o A230029 (Python) %o A230029 from sympy import isprime %o A230029 def f(x): %o A230029 return x**4-x**3-x**2-x-1 %o A230029 {print(p) for p in range(10**5) if isprime(p) and isprime(f(f(p)))} %Y A230029 Cf. A000040, A237639, A125082. %K A230029 nonn %O A230029 1,1 %A A230029 _Derek Orr_, Feb 23 2014