cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230037 Number of ways to write n = x + y + z (0 < x <= y <= z) such that the four pairs {6*x-1, 6*x+1}, {6*y-1, 6*y+1}, {6*z-1, 6*z+1} and {6*x*y-1, 6*x*y+1} are twin prime pairs.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 3, 3, 2, 2, 2, 2, 4, 3, 2, 3, 2, 5, 2, 4, 3, 4, 4, 4, 3, 3, 4, 5, 7, 4, 5, 2, 5, 4, 5, 7, 5, 5, 4, 4, 4, 6, 6, 8, 4, 5, 3, 4, 5, 6, 7, 4, 6, 2, 5, 3, 7, 8, 4, 4, 1, 4, 2, 7, 6, 3, 5, 3, 5, 4, 6, 6, 5, 4, 3, 5, 4, 5, 3, 3, 3, 6, 7, 5, 2, 4, 4, 5, 3, 6, 4, 3, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 06 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 2. Moreover, any integer n > 2 can be written as x + y + z with x = 1 or 5 such that {6*y-1, 6*y+1}, {6*z-1, 6*z+1} and {6*x*y-1, 6*x*y+1} are twin prime pairs.
We have verified this for n up to 5*10^7. It implies the twin prime conjecture.
Zhi-Wei Sun also made the following similar conjectures:
(i) Any integer n > 2 can be written as x + y + z (x, y, z > 0) with the 8 numbers 6*x-1, 6*x+1, 6*y-1, 6*y+1, 6*z-1, 6*z+1, 6*x*y-1 and 6*x*y*z-1 (or 12*x*y-1) all prime.
(ii) Each integer n > 2 can be written as x + y + z (x, y, z > 0) with the 8 numbers 6*x-1, 6*x+1, 6*y-1, 12*y-1, 6*z-1 (or 6*x*y-1), 2*(x^2+y^2)+1, 2*(x^2+z^2)+1, 2*(y^2+z^2)+1 all prime.
(iii) Any integer n > 8 can be written as x + y + z (x, y, z > 0) with x-1, x+1, y-1, y+1, x*z-1 and y*z-1 all prime.
(iv) Every integer n > 4 can be written as p + q + r (r > 0) with p, q, 2*p*q-1, 2*p*r-1 and 2*q*r-1 all prime.
(v) Any integer n > 10 can be written as x^2 + y^2 + z (x, y, z > 0) with 2*x*y-1, 2*x*z+1 and 2*y*z+1 all prime.

Examples

			a(10) = 1 since 10 = 1 + 2 + 7 , and {6*1-1, 6*1+1}, {6*2-1, 6*2+1}, {6*7-1, 6*7+1}  and {6*1*2-1, 6*1*2+1} are twin prime pairs.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[6i-1]&&PrimeQ[6i+1]&&PrimeQ[6j-1]&&PrimeQ[6j+1]&&PrimeQ[6i*j-1]
    &&PrimeQ[6*i*j+1]&&PrimeQ[6(n-i-j)-1]&&PrimeQ[6(n-i-j)+1],1,0],{i,1,n/3},{j,i,(n-i)/2}]
    Table[a[n],{n,1,100}]