This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230059 #19 Jan 26 2021 11:44:52 %S A230059 0,0,0,0,1,2,2,4,5,6,8,10,11,14,16,18,21,24,26,30,33,36,40,44,47,52, %T A230059 56,60,65 %N A230059 Conjectural number of irreducible zeta values of weight 2*n+1 and depth three. %C A230059 a(n) corresponds to the value predicted by the Broadhurst-Kreimer conjecture. %C A230059 Is this sequence the same as A340445? - _R. J. Mathar_, Jan 26 2021 %H A230059 A. B. Goncharov, <a href="http://dx.doi.org/10.4310/MRL.1998.v5.n4.a7">Multiple polylogarithms, cyclotomy and modular complexes</a>, Math. Res. Lett. 5 (1998), no. 4, 497-516. %H A230059 A. B. Goncharov, <a href="https://arxiv.org/abs/math/0009121">The dihedral Lie algebras and Galois symmetries of p_1^l(P^1 - 0, infinity and N-th roots of unity)</a>, arXiv:math/0009121 [math.AG], 2000; Duke Math. J. 110 (2001), 397-487. %H A230059 K. Ihara, M. Kaneko, and D. Zagier, <a href="https://doi.org/10.1112/S0010437X0500182X">Derivation and double shuffle relations for multiple zeta values</a>, Compos. Math. 142 (2006), no 2, p. 307-338. %F A230059 Conjecturally, a(n) = [((n-1)^2-1)/12] for n > 1. %F A230059 Conjecturally, g.f.: x^5*(1+x-x^2)/((1-x)*(1-x^2)*(1-x^3)). %F A230059 Conjecturally, a(n) = if(n<5, 0, (1/2)*(-2*a(n-3) - 4*a(n-2) - 4*a(n-1) + n^2 - 5*n + 2)). - _Jean-François Alcover_, Feb 23 2019. %K A230059 nonn,more %O A230059 1,6 %A A230059 _Samuel Baumard_, Oct 08 2013