This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230069 #16 Oct 13 2013 22:37:13 %S A230069 1,-1,1,2,-1,1,-8,1,-2,1,8,-4,11,-10,1,-32,8,-5,29,-5,1,6112,-8,26, %T A230069 -33,7,-7,1,-3712,512,-112,313,-100,602,-28,1,362624,-2944,1936,-1816, %U A230069 593,-1268,70,-4,1,-71706112,2432,-960,31568,-1481,9681,-566,38,-15,1 %N A230069 Numerators of inverse of triangle A082985(n). %C A230069 First column of the example: A212196(n)/A181131(n), main diagonal of A164555(n)/A027642(n). See A190339(n). Hence a link between Chebyshev and Bernoulli numbers. %C A230069 Mirror image of A201453. %F A230069 T(k,m) = numerator of F(k,m) = (1/(2*m-2*k+1)) * sum(i=0..2*k, binomial(m,2*k-i)*binomial(2*m-2*k+i,i) * Bernoulli(i)). - _Ralf Stephan_, Oct 10 2013 %e A230069 Numerators of %e A230069 1, %e A230069 -1/3, 1/3, %e A230069 2/15, -1/3, 1/5, %e A230069 -8/105, 1/3, -2/5, 1/7, %e A230069 8/105, -4/9, 11/15, -10/21, 1/9, %e A230069 -32/231, 8/9, -5/3, 29/21, -5/9, 1/11 %t A230069 rows = 10; u[n_, m_] /; m > n = 0; u[n_, m_] := Binomial[2*n - m, m]*(2*n + 1)/(2*n - 2*m + 1); t = Table[u[n, m], {n, 0, rows - 1}, {m, 0, rows - 1}] // Inverse; Table[t[[n, k]] // Numerator, {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Oct 08 2013 *) %Y A230069 Cf. A201453(n)/A201454(n), A098435. %K A230069 sign,frac,tabl %O A230069 0,4 %A A230069 _Paul Curtz_, Oct 08 2013 %E A230069 More terms from _Jean-François Alcover_, Oct 08 2013