cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230079 Table a(n,m) of coefficients of inverses of rho(A230078(n)), n>=2, with rho(k):= 2*cos(Pi/k), in the power basis of Q(rho(A230078(n))).

This page as a plain text file.
%I A230079 #9 Nov 04 2013 05:30:33
%S A230079 1,-1,1,2,1,-1,-3,0,1,3,3,-4,-1,1,0,4,0,-1,-3,6,4,-5,-1,1,4,4,-1,-1,
%T A230079 -4,10,10,-15,-6,7,1,-1,5,10,-20,-15,21,7,-8,-1,1,0,12,0,-19,0,8,0,-1,
%U A230079 -8,-8,6,6,-1,-1,6,15,-35,-35,56,28,-36,-9,10,1,-1
%N A230079 Table a(n,m) of coefficients of inverses of rho(A230078(n)), n>=2, with rho(k):= 2*cos(Pi/k), in the power basis of Q(rho(A230078(n))).
%C A230079 The length of row n is delta(A230078(n)), n>=2, with delta(k) = A055034(k).
%C A230079 The power base of the algebraic number field Q(rho(k)), with rho(k):= 2*cos(Pi/k), k >= 2, is <1, rho(k), rho(k)^2, ..., rho(k)^(delta(k)-1)>. Q(rho(k))-integers have integer coefficients in this basis. A230078(n), n >= 2, gives precisely the numbers k for which the inverse 1/rho(k) is a Q(rho(k))-integer. The present table a(n,m) lists these integer coefficients for 1/rho(A230078(n)), n >= 2, m = 0, 1, ..., delta(A230078(n))-1. delta(k) is the degree of the minimal polynomial C(k, x) of rho(k) (see A187360).
%C A230079 In general, 1/rho(k) = -(sum(c(k, m+1)*rho(k)^m, m=0..delta(k)-1))/c(k, 0), k >= 2, with the coefficients c(k ,m) of the minimal polynomial C(k, x) given in A187360(k, m). c(k ,0) = C(k, x=0) is +1 or -1 if and only if k is from {A230078(n), n>=2}, leading to a Q(rho(k))-integer.
%F A230079 a(n,m) = -c(b(n), m+1)/c(b(n), 0), with b(n) := A230078(n), for n>=2 and m= 0, 1, ... , delta(b(n)) -1, with delta(k) = A055034(k), and c(k, m) = A187360(k, m) (see a comment above on the minimal C polynomials).
%e A230079 The table a(n,m) begins, with b(n):=A230078(n):
%e A230079 n, b(n)\m 0  1     2    3   4   5    6   7   8  9  10 ...
%e A230079 2,   3:   1
%e A230079 3,   5:  -1   1
%e A230079 4,   7:   2   1   -1
%e A230079 5,   9:  -3   0    1
%e A230079 6,  11:   3   3   -4   -1   1
%e A230079 7,  12:   0   4    0   -1
%e A230079 8,  13:  -3   6    4   -5  -1   1
%e A230079 9,  15:   4   4   -1   -1
%e A230079 10, 17:  -4  10   10  -15  -6   7    1  -1
%e A230079 11, 19:   5  10  -20  -15  21   7   -8  -1   1
%e A230079 12, 20:   0  12    0  -19   0   8    0  -1
%e A230079 13, 21:  -8  -8    6    6  -1  -1
%e A230079 14, 23:   6  15  -35  -35  56  28  -36  -9  10  1  -1
%e A230079 15, 24:   0  16    0  -20   0   8    0  -1
%e A230079 ...
%e A230079 n=2: C(3, x) = x - 1, delta(3) =1, 1/rho(3) = 1, a rational integer.
%e A230079 n=3: C(5, x) =x^2 - x -1, delta(5) = 2,  a(3,0) = - c(5, 1)/c(5, 0) = -(-1)/(-1) = -1, a(3,1) = - c(5, 2)/c(5, 0) = -1/(-1) = +1.
%e A230079 n =3: rho(5) = tau := (1 + sqrt(5))/2 (golden section); 1/rho(5) = -1*1 + 1*rho(5).
%e A230079 n= 4: rho(7) = 2*cos(Pi/7), (approximately 1.801937736); 1/rho(7) = 2*1 + 1*rho(7)  - 1*rho(7)^2, (approximately 0.5549581320).
%e A230079 n=10: rho(17) = 2*cos(Pi/17), (approximately 1.965946199); 1/rho(17) = -4*1 + 10*rho(17)  + 10*rho(17)^2  - 15*rho(17)^3  - 6*rho(17)^4 + 7*rho(17)^5 + 1*rho(17)^6  -1*rho(17)^7, (approximately 0.5086609190).
%Y A230079 Cf. A055034, A187360, A230078.
%K A230079 sign,tabf,easy
%O A230079 2,4
%A A230079 _Wolfdieter Lang_, Nov 02 2013