cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230095 Odious numbers (A000069) that are the product of exactly two distinct primes.

This page as a plain text file.
%I A230095 #18 May 21 2024 16:41:44
%S A230095 14,21,22,26,35,38,55,62,69,74,82,87,91,93,94,115,118,122,133,134,143,
%T A230095 145,146,155,158,161,185,194,203,205,206,213,214,217,218,247,253,254,
%U A230095 259,262,265,274,295,299,301,302,309,314,319,321,327,334,339,341,346
%N A230095 Odious numbers (A000069) that are the product of exactly two distinct primes.
%H A230095 Charles R Greathouse IV, <a href="/A230095/b230095.txt">Table of n, a(n) for n = 1..10000</a>
%H A230095 E. Fouvry, C. Mauduit, <a href="http://dx.doi.org/10.1007/BF01444238">Sommes des chiffres et nombres presque premiers</a>, (French) [Sums of digits and almost primes] Math. Ann. 305 (1996), no. 3, 571--599. MR1397437 (97k:11029).
%t A230095 Select[Range[400],OddQ[DigitCount[#,2,1]]&&PrimeNu[#]==PrimeOmega[#]==2&] (* _Harvey P. Dale_, May 21 2024 *)
%o A230095 (PARI) isodious(n)=b = binary(n); sum(i=1, #b, b[i]==1) % 2;
%o A230095 isok(n) = isodious(n) && (bigomega(n)==2) && (omega(n)==2); \\ _Michel Marcus_, Oct 12 2013
%o A230095 (PARI) list(lim)=my(v=List()); forprime(p=2,lim\2, forprime(q=2,min(lim\p,p-1), if(hammingweight(p*q)%2, listput(v,p*q)))); Set(v) \\ _Charles R Greathouse IV_, Jan 31 2017
%Y A230095 Cf. A000069, A027697, A130593.
%K A230095 nonn,base
%O A230095 1,1
%A A230095 _N. J. A. Sloane_, Oct 11 2013
%E A230095 More terms from _Michel Marcus_, Oct 12 2013