This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230096 #55 Sep 15 2024 15:21:00 %S A230096 1,0,0,2,2,2,2,6,6,10,10,22,22,42,42,86,86,170,170,342,342,682,682, %T A230096 1366,1366,2730,2730,5462,5462,10922,10922,21846,21846,43690,43690, %U A230096 87382,87382,174762,174762,349526,349526,699050,699050,1398102,1398102,2796202 %N A230096 Number of tilings of an n X 1 rectangle (using tiles of dimension 1 X 1 and 2 X 1) that share no tile at the same position with their mirrored image. %C A230096 For any k>0, it is possible to transform a pair of symmetric tilings of length 2*k-1 that share no tile with their mirrored image into a pair of symmetric tilings of length 2*k with the same property by inserting a 1 X 1 tile next to the central 2 X 1 tile : %C A230096 +- ... -+---+- ... -+ +- ... -+---+-+- ... -+ %C A230096 | ABC | | XYZ | | ABC | |X| XYZ | %C A230096 +- .. +-+o+-+ .. -+ <--> +- .. +-+-o-+-+ .. -+ %C A230096 | ZYX | | CBA | | ZYX |X| | CBA | %C A230096 +- ... -+---+- ... -+ +- ... -+-+---+- ... -+ %C A230096 This transformation is reversible, hence a(2*k-1) = a(2*k) for any k>0. - _Paul Tek_, Oct 15 2013 %H A230096 Paul Tek, <a href="/A230096/b230096.txt">Table of n, a(n) for n = 0..6646</a> %H A230096 Paul Tek, <a href="/A230096/a230096.png">Illustration of the first terms</a> %H A230096 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,2). %F A230096 [0 1 1] [1] %F A230096 a(2*k) = [1 0 0] * [1 0 1]^k * [0], for any k>=0. %F A230096 [1 1 0] [0] %F A230096 [0 1 1] [0] %F A230096 a(2*k-1) = [1 0 0] * [1 0 1]^k * [1], for any k>=1. %F A230096 [1 1 0] [1] %F A230096 a(n) = a(n-2)+2*a(n-4). G.f.: -(2*x^3-x^2+1) / ((x^2+1)*(2*x^2-1)). - _Colin Barker_, Oct 14 2013 %F A230096 a(n) = A078008(floor((n+1)/2)). - _Ralf Stephan_, Oct 18 2013 %e A230096 A 5 x 1 rectangle can be tiled in 8 ways: %e A230096 +-+-+-+-+-+ %e A230096 - |=|=|=|=|=| that shares 5 tiles with its mirrored image, %e A230096 +-+-+-+-+-+ %e A230096 +-+-+-+---+ %e A230096 - | | |=| | that shares 1 tile with its mirrored image, %e A230096 +-+-+-+---+ %e A230096 +-+-+---+-+ %e A230096 - |=| | |=| that shares 2 tiles with its mirrored image, %e A230096 +-+-+---+-+ %e A230096 +-+---+-+-+ %e A230096 - |=| | |=| that shares 2 tiles with its mirrored image, %e A230096 +-+---+-+-+ %e A230096 +-+---+---+ %e A230096 - | | | | that shares no tile with its mirrored image, %e A230096 +-+---+---+ %e A230096 +---+-+-+-+ %e A230096 - | |=| | | that shares 1 tile with its mirrored image, %e A230096 +---+-+-+-+ %e A230096 +---+-+---+ %e A230096 - | = |=| = | that shares 3 tiles with its mirrored image, %e A230096 +---+-+---+ %e A230096 +---+---+-+ %e A230096 - | | | | that shares no tile with its mirrored image. %e A230096 +---+---+-+ %e A230096 Hence, a(5)=2. %o A230096 (PARI) M=[0,1,1;1,0,1;1,1,0]; %o A230096 a(n)=if(n%2==0, [1,0,0]*M^(n/2)*[1;0;0], [1,0,0]*M^((n-1)/2)*[0;1;1])[1] %o A230096 (PARI) Vec(-(2*x^3-x^2+1)/((x^2+1)*(2*x^2-1)) + O(x^100)) \\ _Colin Barker_, Oct 15 2013 %Y A230096 Cf. A224918, A225202. %K A230096 nonn,easy %O A230096 0,4 %A A230096 _Paul Tek_, Oct 13 2013