This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230097 #48 Nov 30 2022 10:27:45 %S A230097 0,1,3,5,11,21,39,45,75,155,181,627,923,1241,2505,3915,5221,6475, %T A230097 11309,15595,19637,31595,44491,69451,113447,185269,244661,357081, %U A230097 453677,908091,980853,2960011,2965685,5931189,11862197,20437147,22193965,43586515,57804981,157355851 %N A230097 Indices of records in A159918. %C A230097 The records themselves are not so interesting: 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, ... (A357304). %C A230097 Lindström mentions that the record value 34 in A159918 is first reached at n = 980853. %H A230097 Bert Dobbelaere, <a href="/A230097/b230097.txt">Table of n, a(n) for n = 1..80</a>, (terms 41..64 from Donovan Johnson, 65..70 from Hugo Pfoertner, missing 68 and 72..80 from Bert Dobbelaere). %H A230097 Bernt Lindström, <a href="http://dx.doi.org/10.1006/jnth.1997.2129">On the binary digits of a power</a>, Journal of Number Theory, Volume 65, Issue 2, August 1997, Pages 321-324. %F A230097 Lindström shows that lim sup wt(m^2)/log_2 m = 2. %o A230097 (Haskell) %o A230097 a230097 n = a230097_list !! (n-1) %o A230097 a230097_list = 0 : f 0 0 where %o A230097 f i m = if v > m then i : f (i + 1) v else f (i + 1) m %o A230097 where v = a159918 i %o A230097 -- _Reinhard Zumkeller_, Oct 12 2013 %o A230097 (Python 3.10+) %o A230097 from itertools import count, islice %o A230097 def A230097_gen(): # generator of terms %o A230097 c = -1 %o A230097 for n in count(0): %o A230097 if (m := (n**2).bit_count())>c: %o A230097 yield n %o A230097 c = m %o A230097 A230097_list = list(islice(A230097_gen(),20)) # _Chai Wah Wu_, Oct 01 2022 %Y A230097 Cf. A000120, A159918, A231897, A357304, A357658. %K A230097 nonn,base %O A230097 1,3 %A A230097 _N. J. A. Sloane_, Oct 11 2013 %E A230097 a(19)-a(40) from _Reinhard Zumkeller_, Oct 12 2013