cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230105 Numbers n such that m + (product of digits of m) = n has exactly one solution m.

This page as a plain text file.
%I A230105 #11 Jan 09 2023 09:06:46
%S A230105 0,2,4,6,8,22,23,24,28,29,30,32,34,35,40,41,42,44,45,46,47,54,55,56,
%T A230105 58,65,66,67,68,75,78,81,85,88,89,90,92,94,95,101,103,105,106,108,112,
%U A230105 114,122,124,125,128,129,132,135,141,143,144,145,146,147,152,154,155,156,158,161,165,166,167,168,175,178,181,185
%N A230105 Numbers n such that m + (product of digits of m) = n has exactly one solution m.
%C A230105 Numbers n such that A230103(n) = 1.
%H A230105 Michael S. Branicky, <a href="/A230105/b230105.txt">Table of n, a(n) for n = 1..10000</a>
%H A230105 <a href="/index/Coi#Colombian">Index entries for Colombian or self numbers and related sequences</a>
%o A230105 (Python)
%o A230105 from math import prod
%o A230105 from collections import Counter
%o A230105 def b(n): return n + prod(map(int, str(n)))
%o A230105 def aupto(n):
%o A230105     c = Counter(b(m) for m in range(n+1))
%o A230105     return [k for k in range(n+1) if c[k] == 1]
%o A230105 print(aupto(185)) # _Michael S. Branicky_, Jan 09 2023
%Y A230105 Cf. A230099, A230103, A230104.
%K A230105 nonn,base
%O A230105 1,2
%A A230105 _N. J. A. Sloane_, Oct 13 2013