This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230110 #14 Mar 31 2023 05:16:02 %S A230110 8,10,30,63,64,512,588,720,800,1320,3960,4096,5184,5760,6400,7200, %T A230110 21600,27720,27900,32768,35280,41472,46080,51200,70840,84672,92400, %U A230110 95040,105600,151200,188160,262144,331776,368640,376320,409600,504000,518400,576000,640000 %N A230110 Composite numbers m such that Sum_{i=1..k} (p_i/(p_i+1)) + Product_{i=1..k} (p_i/(p_i-1)) is an integer, where p_i are the k prime factors of m (with multiplicity). %C A230110 Includes 2^(3*a) * 3^(4*b) if 3*a >= 4*b. - _Robert Israel_, Mar 30 2023 %H A230110 Robert Israel, <a href="/A230110/b230110.txt">Table of n, a(n) for n = 1..155</a> %e A230110 Prime factors of 3960 are 2^3, 3^2, 5 and 11. %e A230110 Sum_{i=1..7} (p(i)/(p(i)+1)) = 3*(2/(2+1)) + 2*(3/(3+1)) + 5/(5+1) + 11/(11+1) = 21/4. %e A230110 Product_{i=1..7} (p(i)/(p(i)-1)) = (2/(2+1))^3 * (3/(3-1))^2 * 5/(5-1) * 11/(11-1) = 99/4. %e A230110 Their sum is an integer: 21/4 + 99/4 = 30. %p A230110 with(numtheory); P:=proc(i) local b,d,n,p; %p A230110 for n from 2 to i do p:=ifactors(n)[2]; %p A230110 b:=add(op(2,d)*op(1,d)/(op(1,d)+1),d=p)+mul((op(1,d)/(op(1,d)-1))^op(2,d),d=p); %p A230110 if trunc(b)=b then print(n); fi; od; end: P(10^7); %Y A230110 Cf. A199767, A198391, A227034, A227248, A230111, A230112. %K A230110 nonn %O A230110 1,1 %A A230110 _Paolo P. Lava_, Oct 09 2013