cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230112 Composite numbers m such that Product_{i=1..k} (p_i/(p_i-1)) / Sum_{i=1..k} (p_i/(p_i+1)) is an integer, where p_i are the k prime factors of m (with multiplicity).

Original entry on oeis.org

4, 8, 16, 64, 256, 720, 800, 2200, 4096, 25600, 33600, 36288, 41472, 46080, 65536, 92400, 104960, 235200, 282240, 338688, 376320, 403200, 419840, 535680, 556640, 576000, 580800, 640000, 844800, 979776, 1088640, 1244160, 1354752, 1382400, 1505280, 1689600, 1995840
Offset: 1

Views

Author

Paolo P. Lava, Oct 09 2013

Keywords

Examples

			Prime factors of 2200 are 2^3, 5^2 and 11.
Sum_{i=1..6} (p(i)/(p(i)+1)) = 3*(2/(2+1)) + 2*(5/(5+1)) + 11/(11+1) = 55/12.
Product_{i=1..6} (p(i)/(p(i)-1)) = (2/(2-1))^3*(5/(5-1))^2*11/(11-1) = 55/4.
The ratio is an integer: (55/4) / (55/12) = 3.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a, d, n, p;
    for n from 2 to q do if not isprime(n) then p:=ifactors(n)[2];
    a:=mul((op(1, d)/(op(1, d)-1))^op(2, d), d=p)/add((op(1, d)/(op(1, d)+1))*op(2, d), d=p); if type(a, integer) then print(n); fi; fi;
    od; end: P(10^7);