A230118 Numbers of quasi-espalier polycubes of a given volume (number of atomic cells).
1, 2, 4, 7, 12, 18, 29, 42, 61, 87, 122, 167, 229, 306, 409, 538, 705, 915, 1182, 1509, 1927, 2438, 3075, 3854, 4814, 5985, 7416, 9144, 11253, 13784, 16845, 20512, 24922, 30179, 36470, 43939, 52841, 63378, 75864, 90605, 108022, 128496, 152603, 180865, 214044, 252826, 298192, 351108, 412832, 484632, 568157
Offset: 1
Keywords
Programs
-
Maple
calcRecEsp:=proc(i, j, k, l) option remember; ## Compute the number n_{i, j, k, l} if (l<0) then 0 elif (i*j*k>l) then 0 elif k=1 then if (i*j=l) then 1 else 0; fi; else s:=0; a:=0; b:=0; while ((i+a)*j*(k-1)<=l-i*j) do b:=0; while ((i+a)*(j+b)*(k-1)<=l-i*j) do s:=s+calcRecEsp(i+a, j+b, k-1, l-i*j); b:=b+1; od; a:=a+1; od; s; fi; end; compteEsp:=proc(l) ### compute \sum_{v}n_{h, v}t^v s:=0; for k to l do i:=1: while (i*k<=l) do j:=1; while (i*k*j<=l) do s:=s+t^k*calcRecEsp(i, j, k, l); j:=j+1; od: i:=i+1; od; od; s; end; enum = [seq(op(convert(compteEsp(ii), list)), ii=2..200)]; serie_quasi_Esp:=proc(l)global enum;local ii; map(coeff,enum,t^l); select(x->x>0,%); sum(t^(ii-1)*%[ii],ii=1..nops(%)); end; serie_quasi_Esp(100): [1, seq(coeff(%, t^ii)-1, ii=1..50)];
Comments