A230119 Numbers of quasi-pyramid polycubes of a given volume (number of atomic cells).
3, 9, 23, 47, 91, 169, 291, 494, 815, 1295, 2043, 3155, 4775, 7165, 10599, 15458, 22455, 32145, 45659, 64519, 90247, 125493, 173515, 238153, 325423, 442169, 597575, 804203, 1077283, 1436593, 1908571, 2525611, 3329391, 4373969, 5726611, 7472763, 9721983, 12608475, 16305179, 21027921, 27043631, 34689187, 44385995, 56652421, 72137483, 91645813, 116167379, 146932651, 185456419, 233594265
Offset: 1
Keywords
Programs
-
Maple
calcPyr:=proc(i, j, k, l) option remember; if (l<0) then 0 elif (i*j*k>l) then 0 elif k=1 then if (i*j=l) then 1 else 0; fi; else s:=0; a:=0; b:=0; while ((i+a)*j*(k-1)<=l-i*j) do b:=0; while ((i+a)*(j+b)*(k-1)<=l-i*j) do s:=s+(a+1)*(b+1)*calcPyr(i+a, j+b, k-1, l-i*j); b:=b+1; od; a:=a+1; od; s; fi; end; countPyr:=proc(l) s:=0; for k to l do i:=1: while (i*k<=l) do j:=1; while (i*k*j<=l) do s:=s+t^k*calcRecPyr(i, j, k, l); j:=j+1; od: i:=i+1; od; od; s; end; enum=[seq(countPyr(ii), ii=1..200)]; serie_quasiPyr:=proc(l) global enum;local ii; map(coeff,enump,t^l); select(x->x>0,%); sum(t^(ii-1)*%[ii],ii=1..nops(%)); end; serie_quasiPyr(100): [1,seq(coeff(%,t^ii)-1,ii=1..50)];
Comments