This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230129 #14 Aug 18 2018 08:38:49 %S A230129 2,24,274,3204,39420,514296,7137818,105318770,1649355338,27356466626, %T A230129 479446719522,8858271760146,172151975433756,3511580514677006, %U A230129 75032190827549478,1676210011258705592,39082263260517298658,949481770375318700914,23998362106238648271276 %N A230129 Number of permutations of order n with the length of longest run equal 6. %H A230129 Alois P. Heinz, <a href="/A230129/b230129.txt">Table of n, a(n) for n = 6..450</a> %p A230129 g:= proc(u, o, t) option remember; `if`(u+o=0, 1, %p A230129 add(g(o+j-1, u-j, 2), j=1..u) +`if`(t<6, %p A230129 add(g(u+j-1, o-j, t+1), j=1..o), 0)) %p A230129 end: %p A230129 b:= proc(u, o, t) option remember; `if`(t=6, g(u, o, t), %p A230129 add(b(o+j-1, u-j, 2), j=1..u)+ %p A230129 add(b(u+j-1, o-j, t+1), j=1..o)) %p A230129 end: %p A230129 a:= n-> add(b(j-1, n-j, 1), j=1..n): %p A230129 seq(a(n), n=6..30); %t A230129 length = 6; %t A230129 g[u_, o_, t_] := g[u, o, t] = If[u+o == 0, 1, Sum[g[o + j - 1, u - j, 2], {j, 1, u}] + If[t<length, Sum[g[u + j - 1, o - j, t+1], {j, 1, o}], 0]]; %t A230129 b[u_, o_, t_] := b[u, o, t] = If[t == length, g[u, o, t], Sum[b[o + j - 1, u - j, 2], {j, 1, u}] + Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}]]; %t A230129 a[n_] := Sum[b[j - 1, n - j, 1], {j, 1, n}]; %t A230129 Table[a[n], {n, length, 30}] (* _Jean-François Alcover_, Aug 18 2018, after _Alois P. Heinz_ *) %Y A230129 Column l=6 of A211318. %Y A230129 A diagonal of A010026. %K A230129 nonn %O A230129 6,1 %A A230129 _Alois P. Heinz_, Oct 10 2013