This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230136 #25 Feb 16 2025 08:33:20 %S A230136 48,240,480,1440,1680,2640,5040,6720,7920,10560,12480,13680,18720, %T A230136 21840,28560,31200,32640,34320,36960,44880,48720,53040,63840,71760, %U A230136 77520,85680,87360,92400,100320,110400,115920,118560,140400,147840,182160,187680,201600,215280,235200,236640,244800,255360,257040,265200,277200 %N A230136 Integer areas A of integer-sided cyclic quadrilaterals such that the circumradius is of prime length. %C A230136 Subset of A210250. The corresponding prime circumradius are 5, 13, 17, 41, 29, 61, 53, 101, 73, 89, 97, 109, 149, 313, 257, 173,... %C A230136 In Euclidean geometry, a cyclic quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed, and the vertices are said to be concyclic. %C A230136 The area A of a cyclic quadrilateral with sides a, b, c, d is given by Brahmagupta’s formula : A = sqrt((s - a)(s -b)(s - c)(s - d)) where s, the semiperimeter is s= (a+b+c+d)/2. %C A230136 The circumradius R (the radius of the circumcircle) is given by R = sqrt(ab+cd)(ac+bd)(ad+bc)/4A. %C A230136 The corresponding R of a(n) are not unique, for example for a(5) = 1680 => (a,b,c,d) = (24, 24, 70, 70) with R = 37 and (a,b,c,d) = (40, 40, 42, 42) with R = 29. %C A230136 It seems that the quadrilaterals are of the form (a, a, b, b). %C A230136 The following table gives the first values (A, R, a, b, c, d) where A is the integer area, R the radius of the circumcircle, and a, b, c, d are the integer sides of the cyclic quadrilateral. %C A230136 ************************************************ %C A230136 * A * R * a * b * c * d * %C A230136 ************************************************ %C A230136 * 48 * 5 * 6 * 6 * 8 * 8 * %C A230136 * 240 * 13 * 10 * 10 * 24 * 24 * %C A230136 * 480 * 17 * 16 * 16 * 30 * 30 * %C A230136 * 1440 * 41 * 18 * 18 * 80 * 80 * %C A230136 * 1680 * 29 * 24 * 24 * 42 * 42 * %C A230136 * 2640 * 61 * 22 * 22 * 120 * 120 * %C A230136 * 5040 * 53 * 56 * 56 * 90 * 90 * %C A230136 * 7920 * 101 * 40 * 40 * 198 * 198 * %C A230136 * 10560 * 73 * 96 * 96 * 110 * 110 * %C A230136 * 12480 * 89 * 78 * 78 * 160 * 160 * %C A230136 * 18720 * 97 * 130 * 130 * 144 * 144 * %C A230136 ........................................... %H A230136 Mohammad K. Azarian, <a href="http://www.jstor.org/stable/25678790">Solution to Problem S125: Circumradius and Inradius</a>, Math Horizons, Vol. 16, Issue 2, November 2008, p. 32. %H A230136 E. Gürel, <a href="http://www.jstor.org/stable/2690677?seq=7">Solution to Problem 1472, Maximal Area of Quadrilaterals</a>, Math. Mag. 69 (1996), 149. %H A230136 Kival Ngaokrajang, <a href="/A230136/a230136.pdf">Illustration of initial terms</a> %H A230136 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CyclicQuadrilateral.html">Cyclic Quadrilateral</a> %e A230136 48 is in the sequence because, for (a,b,c,d) = (6,6,8,8) and : %e A230136 s = (6+6+8+8)/2 = 14; %e A230136 A = sqrt((14-6)(14-6)(14-8)(14-8))=48; %e A230136 R = sqrt((6*6+8*8)(6*8+6*8)(6*8+6*8))/(4*48) = 960/192 = 5 is prime. %t A230136 SMax = 277300 %t A230136 Do[ %t A230136 Do[ %t A230136 x=S^2/(u v w); %t A230136 If[u+v+w+x//OddQ, Continue[]]; %t A230136 If[v+w+x<=u, Continue[]]; %t A230136 r=Sqrt[v w+u x]Sqrt[u w+v x]Sqrt[u v+w x]/(4S); %t A230136 If[r//PrimeQ//Not, Continue[]]; %t A230136 (*{a, b, c, d}=(u+v+w+x)/2-{u, v, w, x}; {a, b, c, d, r, S}//Sow*); %t A230136 S//Sow; Break[]; (*to generate a table, comment out this line and uncomment previous line*) %t A230136 , {u, S^2//Divisors//Select[#, S<=#^2&]&} %t A230136 , {v, S^2/u//Divisors//Select[#, S^2<=u#^3&&#<=u&]&} %t A230136 , {w, S^2/(u v)//Divisors//Select[#, S^2<=u v#^2&&#<=v&]&} %t A230136 ] %t A230136 , {S, 24, SMax, 24} %t A230136 ]//Reap//Last//Last %t A230136 {x, r, a, b, c, d}=.; %t A230136 (* _Zachary Sizer_, Jan 02 2025, adapted from the program for A210250 by _Albert Lau_ *) %Y A230136 Cf. A210250. %K A230136 nonn %O A230136 1,1 %A A230136 _Michel Lagneau_, Oct 10 2013 %E A230136 Incorrect program removed and missing term 85680 and others added by _Zachary Sizer_, Jan 02 2025