cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230183 Number of n X 7 0..2 arrays x(i,j) with each element horizontally or antidiagonally next to at least one element with value 2-x(i,j).

This page as a plain text file.
%I A230183 #8 Jun 26 2025 15:52:07
%S A230183 63,23307,7957785,2770525761,967087903539,337613109419463,
%T A230183 117863748242661711,41147363351637663933,14364941208682152185085,
%U A230183 5014939538324891181282729,1750763768994816766061338911
%N A230183 Number of n X 7 0..2 arrays x(i,j) with each element horizontally or antidiagonally next to at least one element with value 2-x(i,j).
%C A230183 Column 7 of A230184.
%H A230183 R. H. Hardin, <a href="/A230183/b230183.txt">Table of n, a(n) for n = 1..210</a>
%F A230183 Empirical: a(n) = 423*a(n-1) -27574*a(n-2) +635482*a(n-3) -5134400*a(n-4) -1057942*a(n-5) +359390009*a(n-6) -2276133921*a(n-7) -4786697871*a(n-8) +43147871701*a(n-9) -58891282049*a(n-10) +295853081461*a(n-11) -19477795872*a(n-12) -15063958346018*a(n-13) -12707776242978*a(n-14) +31292351839698*a(n-15) +53749073622274*a(n-16) +115892033432538*a(n-17) +123584415908474*a(n-18) +63131758719268*a(n-19) +3552845497892*a(n-20) -120072286442478*a(n-21) -399472984091713*a(n-22) -449835821914753*a(n-23) -141278242519618*a(n-24) +155121134950412*a(n-25) +179495113156895*a(n-26) +77538390418085*a(n-27) +14620397554916*a(n-28) +328715123244*a(n-29) +43801420272*a(n-30) -2654978352*a(n-31) +211558464*a(n-32) +531194112*a(n-33) +14929920*a(n-34) for n>37.
%e A230183 Some solutions for n=3
%e A230183 ..0..2..0..1..1..2..0....0..2..0..0..0..2..2....0..2..0..1..1..2..0
%e A230183 ..0..0..2..0..0..2..2....0..0..2..2..1..0..2....0..0..0..2..0..1..0
%e A230183 ..2..0..1..1..2..0..2....2..0..0..1..2..0..2....2..1..1..2..1..2..0
%Y A230183 Cf. A230184.
%K A230183 nonn
%O A230183 1,1
%A A230183 _R. H. Hardin_, Oct 11 2013