cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230192 Decimal expansion of log(6^9*10^5)/25.

This page as a plain text file.
%I A230192 #27 Apr 19 2025 06:12:06
%S A230192 1,1,0,5,5,5,0,4,2,7,5,2,0,9,0,8,9,3,7,0,9,6,0,9,0,1,3,9,9,5,3,9,2,5,
%T A230192 6,5,9,7,0,0,4,9,6,9,4,6,9,1,1,6,3,6,2,8,9,3,1,4,6,0,0,3,4,3,7,2,0,6,
%U A230192 3,4,1,7,1,4,0,3,2,5,9,8,2,1,7,3,9,8,1,1,9,1,0,4,6,9,5,7,3,9,3,9,1,4,7,1,8
%N A230192 Decimal expansion of log(6^9*10^5)/25.
%C A230192 The value is equal to 6/5*(log(2)/2 + log(3)/3 + log(5)/5 - log(30)/30) = (6/5)*A230191.
%C A230192 Pafnuty Chebyshev proved in 1852 that A*x/log(x) < pi(x) < B*x/log(x) holds for all x >= x(0) with some x(0) sufficiently large, where A = 5/6*B and B is the constant given above.
%D A230192 Harold M. Edwards, Riemann's zeta function, Dover Publications, Inc., New York, 2001, pp. 281-284.
%D A230192 Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 164.
%H A230192 P. L. Chebyshev, <a href="http://sites.mathdoc.fr/JMPA/PDF/JMPA_1852_1_17_A19_0.pdf">Mémoire sur les nombres premiers</a>, Journal de Math. Pures et Appl. 17 (1852), 366-390.
%H A230192 Wikipedia, <a href="http://en.wikipedia.org/wiki/Prime_number_theorem">Prime number theorem</a>.
%H A230192 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A230192 1.105550427520908937096090139953925659700496946911636289314600343720634...
%t A230192 RealDigits[Log[6^9 10^5]/25,10,120][[1]] (* _Harvey P. Dale_, Mar 14 2015 *)
%o A230192 (PARI) default(realprecision, 105); x=log(6^9*10^5)/25; for(n=1, 105, d=floor(x); x=(x-d)*10; print1(d, ", "));
%Y A230192 Cf. A000040, A000720, A230191.
%K A230192 nonn,cons
%O A230192 1,4
%A A230192 _Arkadiusz Wesolowski_, Oct 11 2013