cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230223 Primes p such that 3*p-4, 3*p-10, and 3*p-14 are all prime.

This page as a plain text file.
%I A230223 #17 Sep 29 2023 10:49:16
%S A230223 7,11,17,19,31,37,47,59,79,107,131,151,157,229,317,367,409,431,479,
%T A230223 499,521,541,739,787,1031,1181,1307,1381,1487,1601,1697,1747,1951,
%U A230223 2551,2749,2767,2917,3251,3391,3449,3581,3931,4217,4349,4447,4567,4639,4721,4909,4967
%N A230223 Primes p such that 3*p-4, 3*p-10, and 3*p-14 are all prime.
%C A230223 Conjecture: Any even number greater than 35 can be written as a sum of four terms of this sequence.
%C A230223 Primes in the sequence should be sparser than twin primes although this has not been proved.
%H A230223 Zhi-Wei Sun, <a href="/A230223/b230223.txt">Table of n, a(n) for n = 1..10000</a>
%H A230223 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1211.1588">Conjectures involving primes and quadratic forms</a>, preprint, arXiv:1211.1588.
%e A230223 a(1) = 7 since 3*7-4 = 17, 3*7-10 = 11 and 3*7-14 = 7 are prime.
%t A230223 RQ[n_]:=n>5&&PrimeQ[3n-4]&&PrimeQ[3n-10]&&PrimeQ[3n-14]
%t A230223 m=0
%t A230223 Do[If[RQ[Prime[n]],m=m+1;Print[m," ",Prime[n]]],{n,1,1000}]
%t A230223 Select[Prime[Range[700]],AllTrue[3#-{4,10,14},PrimeQ]&] (* _Harvey P. Dale_, Sep 29 2023 *)
%o A230223 (PARI) is(p)=isprime(p) && isprime(3*p-4) && isprime(3*p-10) && isprime(3*p-14) \\ _Charles R Greathouse IV_, Oct 12 2013
%Y A230223 Cf. A023201, A046131, A230138, A230140, A230217, A230219, A230224.
%K A230223 nonn
%O A230223 1,1
%A A230223 _Zhi-Wei Sun_, Oct 12 2013