cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230254 Number of ways to write n = p + q with p and (p+1)*q/2 + 1 both prime.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 1, 2, 2, 2, 3, 2, 1, 4, 1, 2, 5, 2, 3, 2, 3, 4, 4, 3, 4, 4, 2, 2, 8, 1, 6, 6, 2, 3, 2, 3, 5, 5, 5, 1, 5, 3, 7, 5, 1, 7, 10, 1, 3, 4, 8, 5, 3, 3, 3, 5, 8, 4, 10, 2, 9, 3, 3, 4, 7, 5, 9, 5, 4, 3, 15, 4, 12, 7, 4, 5, 9, 3, 11, 4, 6, 5, 9, 5, 6, 12, 6, 5, 8, 1, 4, 8, 5, 13, 9, 2, 6, 5, 8, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 14 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 3.
We have verified this for n up to 10^8.
We also have some similar conjectures, for example, any integer n > 3 not equal to 17 or 66 can be written as p + q with p and (p+1)*q/2 - 1 both prime.

Examples

			a(15) = 1 since 15 = 5 + 10 with 5 and (5+1)*10/2+1 = 31 both prime.
a(30) = 1 since 30 = 2 + 28 with 2 and (2+1)*28/2+1 = 43 both prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[(Prime[i]+1)(n-Prime[i])/2+1],1,0],{i,1,PrimePi[n-1]}]
    Table[a[n],{n,1,100}]