This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230262 #41 May 03 2015 09:57:16 %S A230262 1,3,-1,11,-2,1,25,-3,1,0,137,-4,3,1,-1,49,-5,2,1,-1,0,363,-6,5,2,-3, %T A230262 -1,1,761,-7,3,5,-1,-1,1,0,7129,-8,7,5,0,-4,1,1,-1,7381,-9,4,7,1,-1, %U A230262 -1,1,-1,0,83711,-10,9,28,49,-29,-5,8,1,-5,5 %N A230262 Numerators of Akiyama-Tanigawa algorithm applied to harmonic numbers, written by antidiagonals. %C A230262 Leading column gives the Bernoulli numbers: A027641(n)/A027642(n). In A051714, A164555 must be written instead of A027641. %H A230262 M. Kaneko, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/KANEKO/AT-kaneko.html">The Akiyama-Tanigawa algorithm for Bernoulli numbers</a>, J. Integer Sequences, Vol 3 (2000), #00.2.9. %e A230262 Numerators of %e A230262 1, 3/2, 11/6, 25/12,... %e A230262 -1/2, -2/3, -3/4, -4/5,... %e A230262 1/6, 1/6, 3/20, 2/15,... =A026741(n+1)/A045896(n+1) %e A230262 0, 1/30, 1/20, 2/35,... =A194531/A193220. %t A230262 t[1, k_] := HarmonicNumber[k]; t[n_, k_] := t[n, k] = k*(t[n-1, k] - t[n-1, k+1]); Table[t[n-k+1, k] // Numerator, {n, 1, 12}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Nov 15 2013 *) %Y A230262 Cf. A051714/A051715, A001008/A002805. %K A230262 sign,frac %O A230262 0,2 %A A230262 _Paul Curtz_, Nov 09 2013 %E A230262 More terms from _Jean-François Alcover_, Nov 15 2013