This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230297 #23 Jul 28 2023 04:08:30 %S A230297 1,10,11,101,111,1010,1100,1110,10001,10011,10110,11001,11100,11111, %T A230297 100100,100110,101001,101100,101111,110100,110111,111100,1000000, %U A230297 1000001,1000011,1000110,1001001,1001100,1001111,1010100,1010111,1011100,1100000,1100010,1100101,1101001,1101101,1110010,1110110,1111011,10000001,10000011 %N A230297 a(n) = A010062(n) written in binary: a(n+1) = a(n) + hammingweight(a(n)) in binary. %C A230297 Is there any way to tell by looking at a binary number whether or not it is a term of this sequence? %H A230297 N. J. A. Sloane, <a href="/A230297/b230297.txt">Table of n, a(n) for n = 0..10000</a> %H A230297 <a href="/index/Coi#Colombian">Index entries for Colombian or self numbers and related sequences</a>. %F A230297 a(n) = A157845(n+1) = A007088(A010062(n)) = A007088(A092391(A028897(a(n-1)))). - _M. F. Hasler_, Nov 18 2019 %t A230297 s[0] = 1; s[n_] := s[n] = s[n-1] + DigitCount[s[n-1], 2, 1]; Table[FromDigits[IntegerDigits[s[n], 2]], {n, 0, 50}] (* _Amiram Eldar_, Jul 28 2023 *) %o A230297 (PARI) (A230297(n)=A007088(A010062(n))); A230297_vec(N)={vector(N,i, if(i>1, A007088(N+=hammingweight(N)), N=1))} \\ _M. F. Hasler_, Nov 18 2019 %Y A230297 Cf. A010062. %Y A230297 Essentially the same as A157845. %Y A230297 Cf. A004207 (base-10 analog); A007088 (n in binary), A010062 (this written in base 10), A000120 (Hammingweight), A092391 (A000120(n) + n), A028897 (convert binary to decimal). %K A230297 nonn,base %O A230297 0,2 %A A230297 _N. J. A. Sloane_, Oct 17 2013