A274779 Numbers whose square is the sum of two positive triangular numbers in exactly one way.
2, 3, 5, 6, 7, 8, 10, 12, 13, 18, 20, 27, 28, 33, 37, 42, 45, 47, 55, 58, 60, 62, 63, 65, 67, 73, 75, 78, 80, 85, 88, 90, 92, 102, 103, 105, 112, 115, 118, 120, 125, 128, 130, 132, 135, 140, 142, 150, 153, 157, 163, 170, 175, 192, 193, 198, 200, 203, 210, 215, 218, 220, 222
Offset: 1
Examples
3 is a term because 3^2 is the sum of two positive triangular numbers in exactly 1 way that is: 3^2 = 3 + 6.
Programs
-
Mathematica
nR[n_]:= (SquaresR[2, n]+Plus@@ Pick[{-4, 4}, IntegerQ/@ Sqrt[{n, n/2}]])/8 ; nTr[n_] := nR[8*n + 2] - Boole@ IntegerQ@ Sqrt[8*n + 1]; Select[Range[250], nTr[#^2]==1 &] (* Giovanni Resta, Jul 08 2016 *)
Comments