This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230313 #9 Dec 11 2015 22:02:18 %S A230313 1,2,3,4,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,26,27,28, %T A230313 29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52, %U A230313 53,54,56,57,58,59,60,61,62,63,64,66,67,68,69,70,71,72,73 %N A230313 Numbers n such that A031971(47058*n) <> n (mod 47058*n). %C A230313 The asymptotic density lies in the interval [0.919943, 0.943954]. %C A230313 Complement of A229312. %C A230313 The numbers in A230311 are the values of k such that the set {n : A031971(k*n)== n (mod k*n)} is nonempty. %H A230313 Jose María Grau, A. M. Oller-Marcen, and J. Sondow, <a href="http://arxiv.org/abs/1309.7941">On the congruence 1^n + 2^n +... + n^n = d (mod n), where d divides n</a> %t A230313 fa = FactorInteger; Car[k_, n_] := Mod[n - Sum[If[IntegerQ[k/(fa[n][[i, %t A230313 1]] - 1)], n/fa[n][[i, 1]], 0], {i, 1, Length[fa[n]]}], n]; supercar[k_, n_] := If[k == 1 || Mod[k, 2] == 0 || Mod[n, 4] > 0, Car[k,n], Mod[Car[k, n] - n/2, n]]; Select[Range[1000], !supercar[47058*#, 47058*#] == # &] %Y A230313 Cf. A031971, A230311. %Y A230313 Cf. A231562 (numbers n such that A031971(8490421583559688410706771261086*n) == n (mod 8490421583559688410706771261086*n)). %Y A230313 Cf. A229312 (numbers n such that A031971(47058*n) == n (mod 47058*n)). %Y A230313 Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)). %Y A230313 Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)). %Y A230313 Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)). %Y A230313 Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)). %Y A230313 Cf. A229313 (numbers n such that A031971(47058*n) <> n (mod 47058*n)). %Y A230313 Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)). %Y A230313 Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)). %Y A230313 Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)). %Y A230313 Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)). %Y A230313 Cf. A229308 (primitive numbers in A229304). %Y A230313 Cf. A229309 (primitive numbers in A229305). %Y A230313 Cf. A229310 (primitive numbers in A229306). %Y A230313 Cf. A229311 (primitive numbers in A229307). %K A230313 nonn %O A230313 1,2 %A A230313 _José María Grau Ribas_, Nov 16 2013