This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230315 #34 Jun 10 2018 16:05:24 %S A230315 2,7,23,59,71,71,71,3643,62939,292627,292627,1089427,2374649,2374649 %N A230315 a(n) is the smallest prime dividing n numbers of the form k! + 1. %C A230315 Note that were the title altered to instead count the numbers k for which p divides k!+1, then a(2) would be 2 rather than 7 (as 0!+1=1!+1). %C A230315 Ties arise for the following list of values: 3, 5, 11, 19, 61, 661, 2267, 3163, 3541, 6529, 9697, 12227, 40751, 46687, 51347, 59447, 69493, 72077, 72923, 83579, 141907, 167267, 201667 and 212207 (and were not sought beyond a(11)). %C A230315 Search for a(15) completed through the 260000th prime. - _James G. Merickel_, Jan 16 2014 %C A230315 a(15) > 1.1*10^8. - _Giovanni Resta_, Jun 10 2018 %H A230315 Wikipedia, <a href="http://en.wikipedia.org/wiki/Wilson%27s_theorem">Wilson's theorem</a> %e A230315 71 divides 7!+1, 9!+1, 19!+1, 51!+1, 61!+1, 63!+1, and of course 70!+1 (Wilson's Theorem). Since a(4)=59 and 61 and 67 do not enter in, 71=a(n) for n=5 to 7. %o A230315 (PARI) %o A230315 { %o A230315 \\ y is an arbitrary value. \\ %o A230315 rec=0;y=10^7;z=primepi(y);a=vector(z,x,1); %o A230315 b=vector(z);q=vector(z,x,prime(x));i=1; %o A230315 for(k=1,z, %o A230315 for(r=i,q[k], %o A230315 for(j=k,z, %o A230315 a[j]*=r;a[j]%=q[j]; %o A230315 if(a[j]==q[j]-1,b[j]++)); %o A230315 while(b[j]>rec, %o A230315 rec++;print1(q[j]", "))); %o A230315 i=q[k]+1) %o A230315 } %Y A230315 Cf. A051301, A230459 %K A230315 nonn,hard,more %O A230315 1,1 %A A230315 _James G. Merickel_, Oct 15 2013 %E A230315 a(12)-a(14) added (with a search limit for a(15) in Comments) by _James G. Merickel_, Jan 16 2014