A230359 Prime numbers p such that their Fibonacci entry points are less than p+1.
5, 11, 13, 17, 19, 29, 31, 37, 41, 47, 53, 59, 61, 71, 73, 79, 89, 97, 101, 107, 109, 113, 131, 137, 139, 149, 151, 157, 173, 179, 181, 191, 193, 197, 199, 211, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 373, 379, 389, 397, 401, 409, 419, 421, 431, 433, 439, 449, 457, 461, 479, 491, 499
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- B. Avila and T. Khovanova, Free Fibonacci Sequences, arXiv preprint arXiv:1403.4614 [math.NT], 2014 and J. Int. Seq. 17 (2014) # 14.8.5.
Programs
-
Maple
filter:= proc(n) local i,a,b,c; if not isprime(n) then return false fi; a:= 0; b:= 1; for i from 1 to n-1 do c:= b; b:= a+b mod n; if b = 0 then return true fi; a:= c; od; false end proc: select(filter, [seq(i,i=3..1000,2)]); # Robert Israel, Sep 01 2020
-
Mathematica
A001177[n_] := For[k = 1, True, k++, If[Divisible[Fibonacci[k], n], Return[k]]]; A230359 = Reap[For[p = 2, p <= 499, p = NextPrime[p], If[A001177[p] < 1+p, Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 21 2013 *)
-
Sage
def isA230359(p): return any(p.divides(fibonacci(k)) for k in (1..p)) print([p for p in primes(1, 500) if isA230359(p)]) # Peter Luschny, Nov 01 2019
Comments