cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230359 Prime numbers p such that their Fibonacci entry points are less than p+1.

Original entry on oeis.org

5, 11, 13, 17, 19, 29, 31, 37, 41, 47, 53, 59, 61, 71, 73, 79, 89, 97, 101, 107, 109, 113, 131, 137, 139, 149, 151, 157, 173, 179, 181, 191, 193, 197, 199, 211, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 373, 379, 389, 397, 401, 409, 419, 421, 431, 433, 439, 449, 457, 461, 479, 491, 499
Offset: 1

Views

Author

Brandon Avila and Tanya Khovanova, Oct 16 2013

Keywords

Comments

For these primes p there exists a Fibonacci like sequence that doesn't contain multiples of p.
For other primes p the Fibonacci entry points are p+1. These primes are sequence A000057: Primes dividing all Fibonacci sequences.

Crossrefs

A002144 is a subsequence.

Programs

  • Maple
    filter:= proc(n) local i,a,b,c;
      if not isprime(n) then return false fi;
      a:= 0; b:= 1;
      for i from 1 to n-1 do
       c:= b;
       b:= a+b mod n; if b = 0 then return true fi;
       a:= c;
      od;
    false
    end proc:
    select(filter, [seq(i,i=3..1000,2)]); # Robert Israel, Sep 01 2020
  • Mathematica
    A001177[n_] := For[k = 1, True, k++, If[Divisible[Fibonacci[k], n], Return[k]]]; A230359 = Reap[For[p = 2, p <= 499, p = NextPrime[p], If[A001177[p] < 1+p, Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 21 2013 *)
  • Sage
    def isA230359(p):
        return any(p.divides(fibonacci(k)) for k in (1..p))
    print([p for p in primes(1, 500) if isA230359(p)]) # Peter Luschny, Nov 01 2019

Formula

{p in A000040: A001177(p) < 1+p}.