cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A243996 Numbers n such that phi(sigma*(n)) = sigma*(phi(n)), where sigma*(n) is the sum of anti-divisors of n and phi(n) is the Euler totient function.

Original entry on oeis.org

7, 9, 20, 25, 80, 143, 825, 3117, 3216, 22774, 52026, 55804, 138276, 187733, 228384, 265545, 320766, 549540, 830814, 839784, 901376, 1293552, 1315776, 2635866, 6771114, 11126800, 12087848, 24351460, 49382242, 52344292, 60063744, 65980038, 78279016, 97638080
Offset: 1

Views

Author

Paolo P. Lava, Jun 18 2014

Keywords

Comments

a(70) > 10^10. - Hiroaki Yamanouchi, Sep 28 2015

Examples

			sigma*(phi(25)) = sigma*(20) = 24, phi(sigma*(25)) = phi(39) = 24.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,d,j,k,n;
    for n from 1 to q do
    k:=0; j:=n; while j mod 2<>1 do k:=k+1; j:=j/2; od;
    a:=sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2;
    k:=0; c:=phi(n); j:=phi(n); while j mod 2<>1 do k:=k+1; j:=j/2; od;
    b:=sigma(2*c+1)+sigma(2*c-1)+sigma(c/2^k)*2^(k+1)-6*c-2;
    if b=phi(a) then print(n); fi; od; end: P(10^10);
  • Mathematica
    antiDivisors[n_] := Select[ Union[ Join[ Select[ Divisors[2 n - 1], OddQ[#] && # != 1 &], Select[ Divisors[ 2n + 1], OddQ[#] && # != 1 &], 2n/Select[ Divisors[ 2n], OddQ[#] && # != 1 &]]], # < n &]; fQ[n_] := EulerPhi@ Total@ antiDivisors@ n == Total@ antiDivisors@ EulerPhi@ n; k = 3; lst = {}; While[k < 10000001, If[ fQ@ k, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Jun 21 2014 *)

Extensions

a(22)-a(25) from Robert G. Wilson v, Jun 21 2014
a(26)-a(34) from Hiroaki Yamanouchi, Sep 28 2015
Showing 1-1 of 1 results.