A352732
The right Aurifeuillian factor of p^p - 1, for primes p congruent to 1 (mod 4).
Original entry on oeis.org
71, 13993643, 19152352117, 813955076015309926319, 46959719470144429555105032871, 491873569944394295636860313807677, 1848593595048531176470116001230356265643249547, 1000403244183535565720394723140528028235711874491322863, 33027769942300819203735411144251223948236849608414254057770836237073
Offset: 1
813955076015309926319 is the larger Aurifeuillian factor of 29^29-1, and 29 is the 4th term of A002144, so a(4) = 813955076015309926319.
A230376
The left Aurifeuillian factor of k^k - 1 for k congruent to 1 (mod 4) and squarefree.
Original entry on oeis.org
11, 1803647, 2699538733, 30778903, 112663560435723374699, 554945667652531, 6243610407478181159725577611, 67643278270835231300426724641533, 253382315888712050791030544452181354268272663, 14710826638296122001733445931451
Offset: 1
1803647 is in the sequence because it is an Aurifeuillian factor of 13^13-1.
A230377
The left Aurifeuillian factor of k^k + 1 for k congruent to 0, 2 or 3 (mod 4) and squarefree.
Original entry on oeis.org
1, 1, 13, 113, 3541, 58367, 2826601, 19231, 113631466919, 9617835527609, 348275601426959, 35522826680397941, 241498479121, 8403855868042458448127, 1161044975606998832441701, 1272844589592126671, 10128165505710094110937686497, 4612290807753604561
Offset: 1
58367 is in the sequence because it is an Aurifeuillian factor of 11^11+1.
Showing 1-3 of 3 results.
Comments