This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230390 #43 Sep 08 2022 08:46:06 %S A230390 1,10,125,1760,26650,423752,6978510,117998400,2036685765,35738059500, %T A230390 635627275767,11433154297760,207621482341000,3801296492623560, %U A230390 70092637731997100,1300500163756675200,24262157874835233000,454847339247972377850,8564398318045559667475 %N A230390 5*binomial(8*n+10,n)/(4*n+5). %C A230390 Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=8, r=10. %H A230390 Vincenzo Librandi, <a href="/A230390/b230390.txt">Table of n, a(n) for n = 0..200</a> %H A230390 J-C. Aval, <a href="http://arxiv.org/pdf/0711.0906v1.pdf">Multivariate Fuss-Catalan Numbers</a>, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669. %H A230390 Thomas A. Dowling, <a href="http://www.mhhe.com/math/advmath/rosen/r5/instructor/applications/ch07.pdf">Catalan Numbers Chapter 7</a> %H A230390 Wojciech Mlotkowski, <a href="http://www.math.uiuc.edu/documenta/vol-15/28.pdf">Fuss-Catalan Numbers in Noncommutative Probability</a>, Docum. Mathm. 15: 939-955. %F A230390 G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=8, r=10. %t A230390 Table[5 Binomial[8 n + 10, n]/(4 n + 5), {n, 0, 30}] %o A230390 (PARI) a(n) = 5*binomial(8*n+10,n)/(4*n+5); %o A230390 (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(4/5))^10+x*O(x^n)); polcoeff(B, n)} %o A230390 (Magma) [5*Binomial(8*n+10, n)/(4*n+5): n in [0..30]]; %Y A230390 Cf. A000108, A007556, A234461, A234462, A234463, A234464, A234465, A234466, A234467. %K A230390 nonn %O A230390 0,2 %A A230390 _Tim Fulford_, Dec 28 2013