This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230417 #27 Dec 11 2021 04:41:36 %S A230417 0,1,0,1,2,0,2,1,1,0,1,2,1,2,0,2,1,2,1,1,0,1,2,2,3,2,3,0,2,1,3,2,3,2, %T A230417 1,0,2,3,1,2,2,3,1,2,0,3,2,2,1,3,2,2,1,1,0,2,3,2,3,1,2,1,2,1,2,0,3,2, %U A230417 3,2,2,1,2,1,2,1,1,0,1,2,2,3,2,3,1,2,2,3,2,3,0,2,1,3,2,3,2,2,1,3,2,3,2,1,0,2,3,1,2,2,3,2,3,1,2,2,3,1,2,0 %N A230417 Lower triangular region of A230415, a triangular table read by rows: T(n, k) tells in how many digit positions the factorial base representations (A007623) of n and k differ, where (n, k) = (0,0), (1,0), (1,1), (2,0), (2,1), (2,2), ..., n >= 0 and (0 <= k <= n). %H A230417 Antti Karttunen, <a href="/A230417/b230417.txt">Rows n = 0..120 of triangle, flattened</a> %F A230417 a(n) = A230415bi(A003056(n),A002262(n)). [As a sequence, this is obtained by taking a subsection from array A230415.] %F A230417 T(n,0) = A060130(n) [the leftmost column]. %F A230417 For n >= 1, T(n,n-1) = A055881(n) [the last nonzero column]. %F A230417 Each entry T(n,k) <= A231714(n,k). %e A230417 This triangular table begins: %e A230417 0; %e A230417 1, 0; %e A230417 1, 2, 0; %e A230417 2, 1, 1, 0; %e A230417 1, 2, 1, 2, 0; %e A230417 2, 1, 2, 1, 1, 0; %e A230417 1, 2, 2, 3, 2, 3, 0; %e A230417 ... %e A230417 Please see A230415 for examples showing how the terms are computed. %o A230417 (Scheme) %o A230417 (define (A230417 n) (A230415bi (A003056 n) (A002262 n))) %o A230417 (define (A230415bi x y) (let loop ((x x) (y y) (i 2) (d 0)) (cond ((and (zero? x) (zero? y)) d) (else (loop (floor->exact (/ x i)) (floor->exact (/ y i)) (+ i 1) (+ d (if (= (modulo x i) (modulo y i)) 0 1))))))) %Y A230417 This is a lower, or equivalently, an upper triangular subregion of symmetric square array A230415. %Y A230417 Cf. A231714, A060130, A055881. %K A230417 nonn,base,tabl %O A230417 0,5 %A A230417 _Antti Karttunen_, Nov 10 2013