This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230440 #24 Oct 26 2013 14:56:29 %S A230440 1,1,2,1,1,3,1,1,1,2,2,4,1,1,1,1,1,3,2,5,1,1,1,1,1,1,1,2,2,2,4,2,3,3, %T A230440 6,1,1,1,1,1,1,1,1,1,1,1,3,2,2,5,2,4,3,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %U A230440 1,2,2,2,2,4,2,2,3,3,2,6,2,5,3,4,4,8 %N A230440 Triangle read by rows in which row n lists A000041(n-1) 1's followed by the list of partitions of n that do not contain 1 as a part in colexicographic order. %C A230440 The n-th row of triangle lists the parts of the n-th section of the set of partitions of any integer >= n. For the definition of "section" see A135010. %e A230440 Illustration of initial terms (row = 1..6). The table shows the six sections of the set of partitions of 6 in three ways. Note that before the dissection, the set of partitions was in colexicographic order, see A211992. More generally, in a master model, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6. %e A230440 --------------------------------------------------------- %e A230440 n j Diagram Parts Parts %e A230440 --------------------------------------------------------- %e A230440 . _ %e A230440 1 1 |_| 1; 1; %e A230440 . _ %e A230440 2 1 _| | 1, 1, %e A230440 2 2 |_ _| 2; 2; %e A230440 . _ %e A230440 3 1 | | 1, 1, %e A230440 3 2 _ _| | 1, 1, %e A230440 3 3 |_ _ _| 3; 3; %e A230440 . _ %e A230440 4 1 | | 1, 1, %e A230440 4 2 | | 1, 1, %e A230440 4 3 _ _ _| | 1, 1, %e A230440 4 4 |_ _| | 2,2, 2,2, %e A230440 4 5 |_ _ _ _| 4; 4; %e A230440 . _ %e A230440 5 1 | | 1, 1, %e A230440 5 2 | | 1, 1, %e A230440 5 3 | | 1, 1, %e A230440 5 4 | | 1, 1, %e A230440 5 5 _ _ _ _| | 1, 1, %e A230440 5 6 |_ _ _| | 3,2, 3,2, %e A230440 5 7 |_ _ _ _ _| 5; 5; %e A230440 . _ %e A230440 6 1 | | 1, 1, %e A230440 6 2 | | 1, 1, %e A230440 6 3 | | 1, 1, %e A230440 6 4 | | 1, 1, %e A230440 6 5 | | 1, 1, %e A230440 6 6 | | 1, 1, %e A230440 6 7 _ _ _ _ _| | 1, 1, %e A230440 6 8 |_ _| | | 2,2,2, 2,2,2, %e A230440 6 9 |_ _ _ _| | 4,2, 4,2, %e A230440 6 10 |_ _ _| | 3,3, 3,3, %e A230440 6 11 |_ _ _ _ _ _| 6; 6; %e A230440 ... %e A230440 Triangle begins: %e A230440 [1]; %e A230440 [1],[2]; %e A230440 [1],[1],[3]; %e A230440 [1],[1],[1],[2,2],[4]; %e A230440 [1],[1],[1],[1],[1],[3,2],[5]; %e A230440 [1],[1],[1],[1],[1],[1],[1],[2,2,2],[4,2],[3,3],[6]; %e A230440 ... %Y A230440 Positive terms of A228716. %Y A230440 Row n has length A138137(n). %Y A230440 Row sums give A138879. %Y A230440 Right border gives A000027. %Y A230440 Cf. A000041, A135010, A138121, A141285, A182703, A187219, A193870, A194446, A206437, A207031, A207034, A207383, A207379, A211009. %K A230440 nonn,tabf %O A230440 1,3 %A A230440 _Omar E. Pol_, Oct 18 2013