A230447 T(n, k) = T(n-1, k) + T(n-1, k-1) + A230135(n, k) with T(n, 0) = A008619(n) and T(n, n) = A080239(n+1), n >= 0 and 0 <= k <= n.
1, 1, 1, 2, 2, 2, 2, 4, 5, 3, 3, 6, 9, 8, 6, 3, 9, 16, 17, 14, 9, 4, 12, 25, 33, 32, 23, 15, 4, 16, 38, 58, 65, 55, 39, 24, 5, 20, 54, 96, 124, 120, 94, 63, 40, 5, 25, 75, 150, 220, 244, 215, 157, 103, 64, 6, 30, 100, 225, 371, 464, 459, 372, 261, 167, 104
Offset: 0
Examples
The first few rows of triangle T(n, k) n >= 0 and 0 <= k <= n. n/k 0 1 2 3 4 5 6 7 ------------------------------------------------ 0| 1 1| 1, 1 2| 2, 2, 2 3| 2, 4, 5, 3 4| 3, 6, 9, 8, 6 5| 3, 9, 16, 17, 14, 9 6| 4, 12, 25, 33, 32, 23, 15 7| 4, 16, 38, 58, 65, 55, 39, 24 The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0. n/k 0 1 2 3 4 5 6 7 ------------------------------------------------ 0| 1, 1, 2, 3, 6, 9, 15, 24 1| 1, 2, 5, 8, 14, 23, 39, 63 2| 2, 4, 9, 17, 32, 55, 94, 157 3| 2, 6, 16, 33, 65, 120, 215, 372 4| 3, 9, 25, 58, 124, 244, 459, 831 5| 3, 12, 38, 96, 220, 464, 924, 1755 6| 4, 16, 54, 150, 371, 835, 1759, 3514 7| 4, 20, 75, 225, 596, 1431, 3191, 6705
Crossrefs
Programs
-
Maple
T := proc(n, k): add(A035317(n-i, n-k+i), i=0..floor(k/2)) end: A035317 := proc(n, k): add((-1)^(i+k) * binomial(i+n-k+1, i), i=0..k) end: seq(seq(T(n, k), k=0..n), n=0..10); # End first program. T := proc(n, k) option remember: if k=0 then return(A008619(n)) elif k=n then return(A080239(n+1)) else A230135(n, k) + procname(n-1, k) + procname(n-1, k-1) fi: end: A008619 := n -> floor(n/2) +1: A080239 := n -> add(combinat[fibonacci](n-4*k), k=0..floor((n-1)/4)): A230135 := proc(n, k): if ((k mod 4 = 2) and (n mod 2 = 1)) or ((k mod 4 = 0) and (n mod 2 = 0)) then return(1) else return(0) fi: end: seq(seq(T(n, k), k=0..n), n=0..10); # End second program.
Formula
T(n, k) = T(n-1, k) + T(n-1, k-1) + A230135(n, k) with T(n, 0) = A008619(n) and T(n, n) = A080239(n+1), n >= 0 and 0 <= k <= n.
T(n, k) = sum(A035317(n-i, n-k+i), i = 0..floor(k/2)), n >= 0 and 0 <= k <= n.
The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0.
Tsq(n, k) = sum(A035317(n+k-i, n+i), i=0..floor(k/2)), n >= 0 and k >= 0.
The G.f. generates the terms in the n-th row of the square array Tsq(n, k).
Comments