cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230449 T(n, k) = T(n-1, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, n) = A052952(n), n >= 0 and 0 <= k <= n.

This page as a plain text file.
%I A230449 #4 Oct 19 2013 10:46:06
%S A230449 1,1,1,1,2,3,1,3,5,4,1,4,8,9,8,1,5,12,17,17,12,1,6,17,29,34,29,21,1,7,
%T A230449 23,46,63,63,50,33,1,8,30,69,109,126,113,83,55,1,9,38,99,178,235,239,
%U A230449 196,138,88,1,10,47,137,277,413,474,435,334,226,144
%N A230449 T(n, k) = T(n-1, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, n) = A052952(n), n >= 0 and 0 <= k <= n.
%C A230449 The right hand columns of triangle T(n, k) represent the Kn2p sums of the ‘Races with Ties’ triangle A035317. See A180662 for the definitions of these sums.
%C A230449 The row sums lead to A094687, the convolution of Fibonacci and Jacobsthal numbers, and the alternating row sums lead to A008346.
%C A230449 The backwards antidiagonal sums equal Kn21(n) = (-1)^n*A175722(n).
%F A230449 T(n, k) = T(n-1, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, n) = F(n+2) - (1-(-1)^n)/2 = A052952(n), with F(n) = A000045(n), the Fibonacci numbers, n >= 0 and 0 <= k <= n.
%F A230449 T(n+p-1, n) = sum(A035317(n-k+p-1, n-2*k), k=0..floor(n/2)), n >= 0 and p >= 1.
%F A230449 The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0.
%F A230449 Tsq(n, k) = sum(Tsq(n-1, i), i=0..k), n >= 1 and k >= 0, with Tsq(0, k) = A052952(k).
%F A230449 Tsq(n, k) = sum(A035317(n+k-i, k-2*i), i=0..floor(k/2)), n >= 0 and k >= 0.
%F A230449 Tsq(n, k) = A052952(2*n+k) - sum(A035317(n+k+i+1, k+2*i+2), i = 0..n-1)
%F A230449 The G.f. generates the terms in the n-th row of the square array Tsq(n, k).
%F A230449 G.f.: (-1)^(n)/((-1+x+x^2)*(x+1)*(x-1)^(n+1)), n >= 0.
%e A230449 The first few rows of triangle T(n, k), n >= 0 and 0 <= k <= n.
%e A230449 n/k 0   1   2    3    4     5     6     7
%e A230449 ------------------------------------------------
%e A230449 0|  1
%e A230449 1|  1,  1
%e A230449 2|  1,  2,  3
%e A230449 3|  1,  3,  5,   4
%e A230449 4|  1,  4,  8,   9,   8
%e A230449 5|  1,  5, 12,  17,  17,   12
%e A230449 6|  1,  6, 17,  29,  34,   29,   21
%e A230449 7|  1,  7, 23,  46,  63,   63,   50,   33
%e A230449 The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0.
%e A230449 n/k 0   1   2    3    4     5     6     7
%e A230449 ------------------------------------------------
%e A230449 0|  1,  1,  3,   4,   8,   12,   21,   33
%e A230449 1|  1,  2,  5,   9,  17,   29,   50,   83
%e A230449 2|  1,  3,  8,  17,  34,   63,  113,  196
%e A230449 3|  1,  4, 12,  29,  63,  126,  239,  435
%e A230449 4|  1,  5, 17,  46, 109,  235,  474,  909
%e A230449 5|  1,  6, 23,  69, 178,  413,  887, 1796
%e A230449 6|  1,  7, 30,  99, 277,  690, 1577, 3373
%e A230449 7|  1,  8, 38, 137, 414, 1104, 2681, 6054
%p A230449 T:= proc(n, k) option remember: if k=0 then return(1) elif k=n then return(combinat[fibonacci](n+2) - (1-(-1)^n)/2) else procname(n-1,k-1)+procname(n-1,k) fi: end: seq(seq(T(n, k), k=0..n), n=0..10); # End first program.
%p A230449 T := proc(n, k): add(A035317(k-p+n-k, k-2*p), p=0..floor(k/2)) end: A035317 := proc(n, k): add((-1)^(i+k) * binomial(i+n-k+1, i), i=0..k) end: seq(seq(T(n, k), k=0..n), n=0..10); # End second program.
%Y A230449 Cf. (Triangle columns) A000012, A000027, A089071, A052952, A129696
%Y A230449 Cf. A230447, A230448
%K A230449 nonn,easy,tabl
%O A230449 0,5
%A A230449 _Johannes W. Meijer_, Oct 19 2013