cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230451 Number of ways to write n = x + y + z (x, y, z > 0) such that 2*x + 1, 2*y + 3, 2*z + 5 are all prime and x*y*z is a triangular number.

Original entry on oeis.org

0, 0, 1, 0, 2, 3, 0, 4, 3, 1, 7, 3, 2, 3, 7, 4, 5, 6, 3, 4, 8, 5, 8, 3, 6, 8, 9, 9, 5, 12, 2, 11, 4, 4, 4, 13, 5, 9, 13, 8, 14, 8, 3, 15, 7, 8, 10, 6, 5, 17, 15, 4, 6, 9, 8, 10, 15, 9, 7, 15, 11, 5, 6, 11, 14, 14, 7, 11, 3, 12, 23, 16, 5, 20, 14, 4, 9, 14, 5, 19, 19, 4, 3, 12, 7, 16, 5, 12, 6, 11, 12, 12, 23, 14, 23, 12, 5, 17, 14, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 19 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 except for n = 1, 2, 4, 7.
(ii) Any integer n > 7 can be written as x + y + z (x, y, z > 0) such that 2*x + 1, 2*y + 1, 2*x*y + 1 are primes and x*y*z is a triangular number.
(iii) Each integer n > 4 not equal to 7 or 14 can be expressed as p + q + r (p, q, r > 0) with p and 2*q + 1 both primes, and p*q*r a triangular number.
(iv) Any integer n > 6 not among 16, 20, 60 can be written as x + y + z (x, y, z > 0) such that x*y + x*z + y*z is a triangular number.
Part (i) is stronger than Goldbach's weak conjecture which was finally proved by H. Helfgott in 2013.
See also A227877 and A230596 for some related conjectures.

Examples

			a(6) = 3 since 6 = 1 + 2 + 3 = 2 + 1 + 3 = 3 + 2 + 1, and 2*1 + 1 = 3, 2*2 + 3 = 7, 2*3 + 5 = 11, 2*2 + 1 = 5, 2*1 + 3 = 5, 2*3 + 1 = 7, 2*1 + 5 = 7 are all prime.
a(10) = 1 since 10 = 3 + 4 + 3, and 2*3 + 1 = 7, 2*4 + 3 = 11, 2*3 + 5 = 11 are all prime.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]
    TQ[n_]:=SQ[8n+1]
    a[n_]:=Sum[If[PrimeQ[2i+1]&&PrimeQ[2j+3]&&PrimeQ[2(n-i-j)+5]&&TQ[i*j(n-i-j)],1,0],{i,1,n-2},{j,1,n-1-i}]
    Table[a[n],{n,1,100}]