A230451 Number of ways to write n = x + y + z (x, y, z > 0) such that 2*x + 1, 2*y + 3, 2*z + 5 are all prime and x*y*z is a triangular number.
0, 0, 1, 0, 2, 3, 0, 4, 3, 1, 7, 3, 2, 3, 7, 4, 5, 6, 3, 4, 8, 5, 8, 3, 6, 8, 9, 9, 5, 12, 2, 11, 4, 4, 4, 13, 5, 9, 13, 8, 14, 8, 3, 15, 7, 8, 10, 6, 5, 17, 15, 4, 6, 9, 8, 10, 15, 9, 7, 15, 11, 5, 6, 11, 14, 14, 7, 11, 3, 12, 23, 16, 5, 20, 14, 4, 9, 14, 5, 19, 19, 4, 3, 12, 7, 16, 5, 12, 6, 11, 12, 12, 23, 14, 23, 12, 5, 17, 14, 5
Offset: 1
Keywords
Examples
a(6) = 3 since 6 = 1 + 2 + 3 = 2 + 1 + 3 = 3 + 2 + 1, and 2*1 + 1 = 3, 2*2 + 3 = 7, 2*3 + 5 = 11, 2*2 + 1 = 5, 2*1 + 3 = 5, 2*3 + 1 = 7, 2*1 + 5 = 7 are all prime. a(10) = 1 since 10 = 3 + 4 + 3, and 2*3 + 1 = 7, 2*4 + 3 = 11, 2*3 + 5 = 11 are all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..6000
- Zhi-Wei Sun, A new conjecture on triangular numbers, a message to Number Theory List, Oct. 25, 2013.
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, preprint, arXiv:1211.1588.
Crossrefs
Programs
-
Mathematica
SQ[n_]:=IntegerQ[Sqrt[n]] TQ[n_]:=SQ[8n+1] a[n_]:=Sum[If[PrimeQ[2i+1]&&PrimeQ[2j+3]&&PrimeQ[2(n-i-j)+5]&&TQ[i*j(n-i-j)],1,0],{i,1,n-2},{j,1,n-1-i}] Table[a[n],{n,1,100}]
Comments