A230490 Size of largest subset of [1..n] containing no three terms in a geometric progression with integer ratio.
1, 2, 3, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15, 16, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 39, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 52, 52, 53, 54, 55, 55, 56, 57, 58, 59, 60, 61, 62, 62, 63, 64, 65, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 76, 77, 78, 79, 79, 80, 81, 81, 81
Offset: 1
Keywords
Examples
The integers [1..9] include the three geometric progressions (1,2,4) (2,4,8) and (1,3,9), which cannot all be precluded with any 1 exclusion, but 2 exclusions suffice. Thus the size of the largest subsets of [1..9] free of integer ratio geometric progressions is 7.
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 1..152
- M. Beiglboeck, V. Bergelson, N. Hindman, and D. Strauss, Multiplicative structures in additively large sets, J. Combin. Theory Ser. A 113 (2006)
- N. McNew, On sets of integers which contain no three terms in geometric progression, arXiv:1310.2277 [math.NT], 2013.
- M. B. Nathanson and K. O'Bryant, A problem of Rankin on sets without geometric progressions, arXiv:1408.2880 [math.NT], 2014.
- K. O'Bryant, Sets of natural numbers with proscribed subsets, arXiv:1410.4900 [math.NT], 2014-2015.
Crossrefs
Programs
-
PARI
ok(v)=for(i=3,#v,my(k=v[i]);fordiv(core(k,1)[2],d,if(d>1 && setsearch(v,k/d) && setsearch(v,k/d^2), return(0)))); 1 a(n)=my(v=select(k->4*k>n&&issquarefree(k),vector(n,i,i)), u=setminus(vector(n, i,i),v),r,H);for(i=1,2^#u-1,H=hammingweight(i); if(H>r && ok(vecsort(concat(v,vecextract(u,i)),,8)),r=H));#v+r \\ Charles R Greathouse IV, Oct 20 2013
Comments