cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230490 Size of largest subset of [1..n] containing no three terms in a geometric progression with integer ratio.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15, 16, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 39, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 52, 52, 53, 54, 55, 55, 56, 57, 58, 59, 60, 61, 62, 62, 63, 64, 65, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 76, 77, 78, 79, 79, 80, 81, 81, 81
Offset: 1

Views

Author

Nathan McNew, Oct 20 2013

Keywords

Comments

Trivial lower bound: a(n) >= A013928(n+1). - Charles R Greathouse IV, Oct 20 2013
McNew proves that if n is sufficiently large, then the n-th term is between 0.818n and 0.820n. - Kevin O'Bryant, Aug 17 2015

Examples

			The integers [1..9] include the three geometric progressions (1,2,4) (2,4,8) and (1,3,9), which cannot all be precluded with any 1 exclusion, but 2 exclusions suffice. Thus the size of the largest subsets of [1..9] free of integer ratio geometric progressions is 7.
		

Crossrefs

Cf. A003002, A013928, A208746 is similar but also allows progressions with rational ratio, like (4,6,9).

Programs

  • PARI
    ok(v)=for(i=3,#v,my(k=v[i]);fordiv(core(k,1)[2],d,if(d>1 && setsearch(v,k/d) && setsearch(v,k/d^2), return(0)))); 1
    a(n)=my(v=select(k->4*k>n&&issquarefree(k),vector(n,i,i)), u=setminus(vector(n, i,i),v),r,H);for(i=1,2^#u-1,H=hammingweight(i); if(H>r && ok(vecsort(concat(v,vecextract(u,i)),,8)),r=H));#v+r \\ Charles R Greathouse IV, Oct 20 2013