This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230491 #12 Feb 16 2025 08:33:20 %S A230491 6,84,96,108,120,132,144,156,168,180,240,264,300,324,396,420,432,468, %T A230491 486,504,540,594,630,684,720,756,864,990,1026,1080,1116,1134,1152, %U A230491 1224,1332,1344,1404,1440,1494,1536,1584,1638,1680,1710,1728,1782,1824,1872,1890 %N A230491 Integer areas of the integer-sided triangles such that the length of the inradius is a square. %C A230491 The primitive areas are 6, 84, 108, 120, 132, 144, 156, 168, ... %C A230491 The non-primitive areas 16*a(n) are in the sequence because if r is the inradius corresponding to a(n), then 4*r is the inradius corresponding to 16*a(n). %C A230491 The following table gives the first values (A, r, a, b, c) where A is the integer area, r the inradius and a, b, c are the integer sides of the triangle. %C A230491 ****************************** %C A230491 * A * r * a * b * c * %C A230491 ******************************* %C A230491 * 6 * 1 * 3 * 4 * 5 * %C A230491 * 84 * 4 * 13 * 14 * 15 * %C A230491 * 96 * 4 * 12 * 16 * 20 * %C A230491 * 108 * 4 * 15 * 15 * 24 * %C A230491 * 120 * 4 * 10 * 24 * 26 * %C A230491 * 132 * 4 * 11 * 25 * 30 * %C A230491 * 144 * 4 * 18 * 20 * 34 * %C A230491 * 156 * 4 * 15 * 26 * 37 * %C A230491 * 168 * 4 * 10 * 35 * 39 * %C A230491 * 180 * 4 * 9 * 40 * 41 * %C A230491 * 240 * 4 * 12 * 50 * 58 * %C A230491 * 264 * 4 * 33 * 34 * 65 * %C A230491 * 300 * 4 * 25 * 51 * 74 * %C A230491 * 324 * 4 * 9 * 75 * 78 * %C A230491 * 396 * 4 * 11 * 90 * 97 * %C A230491 * 420 * 4 * 21 * 85 * 104 * %C A230491 * 432 * 9 * 30 * 30 * 36 * %C A230491 * 468 * 9 * 25 * 39 * 40 * %C A230491 ......................... %D A230491 Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32. %H A230491 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/Inradius.html">MathWorld: Inradius</a> %F A230491 Area A = sqrt(s*(s-a)*(s-b)*(s-c)) with s = (a+b+c)/2 (Heron's formula) and inradius r = A/s. %e A230491 84 is in the sequence because the area of triangle (13, 14, 15) is given by Heron's formula A = sqrt(21*(21-13)*(21-14)*(21-15))= 84 where the number 21 is the semiperimeter and the inradius is given by r = A/s = 84/21 = 4 is a square. %t A230491 nn = 600; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 && IntegerQ[Sqrt[area2]] && IntegerQ[Sqrt[Sqrt[area2]/s]], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst] %Y A230491 Cf. A000290, A188158, A228383. %K A230491 nonn %O A230491 1,1 %A A230491 _Michel Lagneau_, Oct 20 2013