cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230505 T(n,k,s) is the number of parts of each size in the set of partitions of an n X k rectangle into integer-sided squares with side s, considering only the list of parts; irregular triangle T(n,k,s), n >= k >= s >= 1, read by rows.

This page as a plain text file.
%I A230505 #42 Oct 27 2023 22:06:07
%S A230505 1,2,4,1,3,8,1,14,1,1,4,12,3,27,3,1,47,10,1,1,5,18,3,41,4,2,85,13,3,1,
%T A230505 134,16,4,1,1,6,24,6,62,7,4,135,27,5,3,250,40,13,3,1,415,82,24,6,1,1,
%U A230505 7,32,6,87,9,5,204,34,8,4,381,53,18,5,3,717,127,45,13,4,1
%N A230505 T(n,k,s) is the number of parts of each size in the set of partitions of an n X k rectangle into integer-sided squares with side s, considering only the list of parts; irregular triangle T(n,k,s), n >= k >= s >= 1, read by rows.
%H A230505 Alois P. Heinz, <a href="/A230505/b230505.txt">Rows n = 1..78, flattened</a> (Rows 1..42 from Christopher Hunt Gribble)
%H A230505 Christopher Hunt Gribble, <a href="/A230505/a230505_1.cpp.txt">C++ program</a>
%F A230505 Sum_{s=1..k} T(n,k,s) = A225622(n,k).
%F A230505 Sum_{s=1..k} T(n,k,s)*s^2 = n*k*A224697(n,k).
%e A230505 T(5,4,2) = 13 because there are 13 2 X 2 squares in the 9 partitions of a 5 X 4 rectangle into integer-sided squares.  The partitions are:
%e A230505 .         Square side
%e A230505 .         1  2  3  4
%e A230505 1        20  0  0  0
%e A230505 2        16  1  0  0
%e A230505 3        12  2  0  0
%e A230505 4         8  3  0  0
%e A230505 5         4  4  0  0
%e A230505 6        11  0  1  0
%e A230505 7         7  1  1  0
%e A230505 8         3  2  1  0
%e A230505 9         4  0  0  1
%e A230505 Total    85 13  3  1
%e A230505 The irregular triangle begins:
%e A230505 n,k          Square Side (s)
%e A230505 .       1   2   3   4   5   6   7 ...
%e A230505 1,1     1
%e A230505 2,1     2
%e A230505 2,2     4   1
%e A230505 3,1     3
%e A230505 3,2     8   1
%e A230505 3,3    14   1   1
%e A230505 4,1     4
%e A230505 4,2    12   3
%e A230505 4,3    27   3   1
%e A230505 4,4    47  10   1   1
%e A230505 5,1     5
%e A230505 5,2    18   3
%e A230505 5,3    41   4   2
%e A230505 5,4    85  13   3   1
%e A230505 5,5   134  16   4   1   1
%e A230505 6,1     6
%e A230505 6,2    24   6
%e A230505 6,3    62   7   4
%e A230505 6,4   135  27   5   3
%e A230505 6,5   250  40  13   3   1
%e A230505 6,6   415  82  24   6   1   1
%e A230505 7,1     7
%e A230505 7,2    32   6
%e A230505 7,3    87   9   5
%e A230505 7,4   204  34   8   4
%e A230505 7,5   381  53  18   5   3
%e A230505 7,6   717 127  45  13   4   1
%e A230505 7,7  1102 165  60  16   6   1   1
%p A230505 b:= proc(n, l) option remember; local i, k, s, t;
%p A230505       if max(l[])>n then {} elif n=0 or l=[] then {0}
%p A230505     elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
%p A230505     else for k do if l[k]=0 then break fi od; s:={};
%p A230505          for i from k to nops(l) while l[i]=0 do s:=s union
%p A230505              map(v->v+x^(1+i-k), b(n, [l[j]$j=1..k-1,
%p A230505                  1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))
%p A230505          od; s
%p A230505       fi
%p A230505     end:
%p A230505 T:= (n, k)->(p->seq(coeff(p, x, v), v=1..k))(add(h, h=b(n, [0$k]))):
%p A230505 seq(seq(T(n, k), k=1..n), n=1..9);  # _Alois P. Heinz_, Oct 24 2013
%t A230505 b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[Max[l] > n, {}, n == 0 || l == {}, {0}, Min[l] > 0, t = Min[l]; b[n - t, l - t], True, For[k = 1, k <= Length[l], k++, If[l[[k]] == 0, Break[]]]; s = {}; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s ~Union~ Map[# + x^(1 + i - k)&, b[n, Join[l[[1 ;; k - 1]], Array[1 + i - k&, i - k + 1], l[[i + 1 ;; Length[l]]]]]]]; s]]; T[n_, k_] := Function[p, Table[Coefficient[p, x, v], {v, 1, k}]][b[n, Array[0&, k]] // Total]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 9}] // Flatten (* _Jean-François Alcover_, Jan 24 2016, after _Alois P. Heinz_ *)
%Y A230505 Cf. A034295, A224697, A225622.
%K A230505 nonn,tabf
%O A230505 1,2
%A A230505 _Christopher Hunt Gribble_, Oct 22 2013