cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230545 Solutions of the equation n' = n + phi(n), where n' is the arithmetic derivative of n.

Original entry on oeis.org

8, 12, 100, 140, 243, 405, 1372, 46875, 56644, 64827, 98260, 101871, 107811, 129375, 230692, 243675, 300820, 644204, 851175, 1953125, 3828125, 7948395, 19307236, 28218268, 36517316, 69330772, 70174377, 93961125, 115008417, 173353125, 181010116, 267603885, 404021709
Offset: 1

Views

Author

Paolo P. Lava, Oct 25 2013

Keywords

Comments

Subsequence of A002808. - Altug Alkan, Oct 07 2015

Examples

			For n = 1372 we have phi(n) = 588, n' = 1960 and 1960 = 1372 + 588.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:= proc(q) local a1, a2, n, p;
    for n from 1 to q do a1:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
    if a1=n+phi(n) then print(n); fi; od; end: P(10^6);
  • PARI
    for(n=2, 10^10, if((k = n + eulerphi(n)) && (d(n) = local(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))) && k==d(n), print1(n", "))) \\ Altug Alkan, Oct 06 2015

Extensions

a(21)-a(33) from Giovanni Resta, Oct 25 2013