A230545 Solutions of the equation n' = n + phi(n), where n' is the arithmetic derivative of n.
8, 12, 100, 140, 243, 405, 1372, 46875, 56644, 64827, 98260, 101871, 107811, 129375, 230692, 243675, 300820, 644204, 851175, 1953125, 3828125, 7948395, 19307236, 28218268, 36517316, 69330772, 70174377, 93961125, 115008417, 173353125, 181010116, 267603885, 404021709
Offset: 1
Keywords
Examples
For n = 1372 we have phi(n) = 588, n' = 1960 and 1960 = 1372 + 588.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..108 (terms < 10^13)
Programs
-
Maple
with(numtheory); P:= proc(q) local a1, a2, n, p; for n from 1 to q do a1:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); if a1=n+phi(n) then print(n); fi; od; end: P(10^6);
-
PARI
for(n=2, 10^10, if((k = n + eulerphi(n)) && (d(n) = local(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))) && k==d(n), print1(n", "))) \\ Altug Alkan, Oct 06 2015
Extensions
a(21)-a(33) from Giovanni Resta, Oct 25 2013
Comments