cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A230658 Number of nX3 0..2 black square subarrays x(i,j) with each element diagonally or antidiagonally next to at least one element with value 2-x(i,j).

Original entry on oeis.org

0, 3, 15, 21, 135, 177, 1155, 1509, 9855, 12873, 84075, 109821, 717255, 936897, 6118995, 7992789, 52201935, 68187513, 445341435, 581716461, 3799265175, 4962698097, 32412020835, 42337417029, 276511126815, 361185960873
Offset: 1

Views

Author

R. H. Hardin, Oct 27 2013

Keywords

Comments

Column 3 of A230661

Examples

			Some solutions for n=5
..x..0..x....x..2..x....x..1..x....x..0..x....x..2..x....x..2..x....x..2..x
..1..x..2....0..x..0....0..x..1....2..x..0....0..x..0....2..x..0....0..x..0
..x..1..x....x..0..x....x..2..x....x..2..x....x..2..x....x..0..x....x..1..x
..2..x..2....2..x..0....1..x..0....0..x..2....0..x..0....0..x..0....0..x..1
..x..0..x....x..2..x....x..1..x....x..0..x....x..2..x....x..2..x....x..2..x
		

Formula

Empirical: a(n) = 9*a(n-2) -4*a(n-4).
Empirical: G.f. -3*x^2*(-1-5*x+2*x^2) / ( 1-9*x^2+4*x^4 ). - R. J. Mathar, Oct 27 2013

A230659 Number of n X 5 0..2 black square subarrays x(i,j) with each element diagonally or antidiagonally next to at least one element with value 2-x(i,j).

Original entry on oeis.org

0, 15, 135, 531, 8613, 28161, 477279, 1539207, 26178201, 84335553, 1434726783, 4621740687, 78627215025, 253283346081, 4308981442911, 13880597644287, 236143613924865, 760693546670625, 12941296146524511, 41688023124390687
Offset: 1

Views

Author

R. H. Hardin, Oct 27 2013

Keywords

Examples

			Some solutions for n=5:
..x..0..x..0..x....x..0..x..1..x....x..2..x..0..x....x..0..x..2..x
..2..x..0..x..2....2..x..2..x..1....0..x..0..x..2....2..x..2..x..0
..x..2..x..2..x....x..2..x..1..x....x..2..x..0..x....x..2..x..2..x
..0..x..2..x..1....0..x..1..x..0....2..x..0..x..1....0..x..0..x..1
..x..0..x..1..x....x..1..x..2..x....x..0..x..1..x....x..2..x..1..x
		

Crossrefs

Column 5 of A230661.

Formula

Empirical: a(n) = 59*a(n-2) - 230*a(n-4) - 2*a(n-6) + 32*a(n-8) for n>10.
Empirical g.f.: 3*x^2*(5 + 45*x - 118*x^2 + 216*x^3 + 94*x^4 + 54*x^5 - 44*x^6 - 16*x^8) / (1 - 59*x^2 + 230*x^4 + 2*x^6 - 32*x^8). - Colin Barker, Sep 22 2018

A230660 Number of nX7 0..2 black square subarrays x(i,j) with each element diagonally or antidiagonally next to at least one element with value 2-x(i,j).

Original entry on oeis.org

0, 63, 1155, 11745, 477279, 3951657, 169006665, 1374288243, 59075291211, 479621050353, 20625942501183, 167435671598913, 7200781142959245, 58453268091967479, 2513864130034802115, 20406595554618417837
Offset: 1

Views

Author

R. H. Hardin, Oct 27 2013

Keywords

Comments

Column 7 of A230661

Examples

			Some solutions for n=5
..x..0..x..1..x..2..x....x..0..x..1..x..1..x....x..0..x..0..x..0..x
..2..x..0..x..1..x..0....0..x..2..x..1..x..1....0..x..2..x..2..x..0
..x..1..x..2..x..2..x....x..2..x..1..x..0..x....x..2..x..2..x..2..x
..0..x..1..x..2..x..0....0..x..1..x..2..x..1....2..x..0..x..2..x..1
..x..2..x..1..x..0..x....x..2..x..0..x..1..x....x..0..x..0..x..1..x
		

Formula

Empirical: a(n) = 390*a(n-2) -14687*a(n-4) +146138*a(n-6) -823339*a(n-8) -2774563*a(n-10) +26807114*a(n-12) -60400888*a(n-14) +106367378*a(n-16) -35490451*a(n-18) -7548040169*a(n-20) +1542760687*a(n-22) +7961883650*a(n-24) +3473400076*a(n-26) +61902164677*a(n-28) +25546220017*a(n-30) +84369583536*a(n-32) +75320917456*a(n-34) +42723111397*a(n-36) -5387877662*a(n-38) +926204972*a(n-40) -121037200*a(n-42) +10124352*a(n-44) +414720*a(n-46) for n>47

A230657 Number of n X n 0..2 black square subarrays x(i,j) with each element diagonally or antidiagonally next to at least one element with value 2-x(i,j).

Original entry on oeis.org

1, 3, 15, 123, 8613, 337977, 169006665, 40860127671, 131515599970167, 201844710508818147, 4141132208926170478473, 40464088148356899296269059
Offset: 1

Views

Author

R. H. Hardin, Oct 27 2013

Keywords

Comments

Diagonal of A230661

Examples

			Some solutions for n=5
..x..1..x..1..x....x..2..x..0..x....x..1..x..1..x....x..1..x..1..x
..1..x..1..x..1....0..x..1..x..2....1..x..0..x..1....1..x..2..x..1
..x..2..x..2..x....x..1..x..0..x....x..2..x..1..x....x..0..x..0..x
..0..x..1..x..0....2..x..2..x..1....2..x..1..x..2....2..x..0..x..2
..x..2..x..1..x....x..0..x..1..x....x..0..x..0..x....x..2..x..0..x
		
Showing 1-4 of 4 results.