cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230662 Number of lattice paths from (0,0) to (n,n) that do not go below the x-axis or above the diagonal x=y and consist of steps u=(1,1), U=(1,2), d=(1,-1), D=(1,-2) and H=(1,0).

This page as a plain text file.
%I A230662 #26 Jun 28 2022 03:16:47
%S A230662 1,1,2,4,10,26,74,218,668,2096,6726,21946,72666,243504,824528,2816854,
%T A230662 9698520,33620626,117254340,411135452,1448544666,5125796448,
%U A230662 18209367238,64919822556,232206203152,833040115596,2996741699470,10807658186756,39068847237770
%N A230662 Number of lattice paths from (0,0) to (n,n) that do not go below the x-axis or above the diagonal x=y and consist of steps u=(1,1), U=(1,2), d=(1,-1), D=(1,-2) and H=(1,0).
%H A230662 Alois P. Heinz, <a href="/A230662/b230662.txt">Table of n, a(n) for n = 0..1000</a>
%F A230662 a(n) ~ c * d^n / n^(3/2), where d = 47/54 + (1/54)*sqrt(2479 - (6525*15^(2/3))/(-8271 + 1496*sqrt(51))^(1/3) + 45*(15*(-8271 + 1496*sqrt(51)))^(1/3)) + (1/2)*sqrt(4958/729 + (725*5^(2/3))/(27*(3*(-8271 + 1496*sqrt(51)))^(1/3)) - (5*(5*(-8271 + 1496*sqrt(51)))^(1/3))/(27*3^(2/3)) + 318616/(729*sqrt(2479 - (6525*15^(2/3))/(-8271 + 1496*sqrt(51))^(1/3) + 45*(15*(-8271 + 1496*sqrt(51)))^(1/3)))) = 3.8344372490288055637652411266... and c = 0.2279529551507616709766813416011544206054574311958828512... - _Vaclav Kotesovec_, Oct 30 2013, updated Sep 11 2021
%e A230662 a(0) = 1: the empty path.
%e A230662 a(1) = 1: u.
%e A230662 a(2) = 2: HU, uu.
%e A230662 a(3) = 4: HuU, uHU, HUu, uuu.
%e A230662 a(4) = 10: HHUU, udUU, HuuU, uHuU, HUHU, uuHU, HuUu, uHUu, HUuu, uuuu.
%e A230662 a(5) = 26:  HHuUU, uduUU, HuHUU, uHHUU, HUdUU, uudUU, HHUuU, udUuU, HuuuU, uHuuU, HUHuU, uuHuU, HuUHU, uHUHU, HUuHU, uuuHU, HHUUu, udUUu, HuuUu, uHuUu, HUHUu, uuHUu, HuUuu, uHUuu, HUuuu, uuuuu.
%p A230662 b:= proc(x, y) option remember; `if`(y>x or y<0, 0,
%p A230662       `if`(x=0, 1, add(b(x-1, y+j), j=-2..2)))
%p A230662     end:
%p A230662 a:= n-> b(n, n):
%p A230662 seq(a(n), n=0..30);
%t A230662 b[x_, y_] := b[x, y] = If[y > x || y < 0, 0,
%t A230662    If[x == 0, 1, Sum[b[x - 1, y + j], {j, -2, 2}]]];
%t A230662 a[n_] := b[n, n];
%t A230662 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Jun 28 2022, after _Alois P. Heinz_ *)
%Y A230662 Cf. A225042.
%K A230662 nonn
%O A230662 0,3
%A A230662 _Alois P. Heinz_, Oct 28 2013