This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230665 #27 Jan 23 2014 15:41:55 %S A230665 11,13,41,37,47,67,53,79,59,109,107,109,139,151,167,173,229,263,271, %T A230665 307,397,389,409,421,383,463,439,419,487,467,491,569,599,647,653,613, %U A230665 677,683,757,751,727,853,821,881,907,937,1021,1061,1033,1087,1193,1249,1229 %N A230665 Primes which are equal to the digit sum of 38^n, in the order that they are found. %C A230665 The expression k^n with 1 < n < 100 generates more primes with k=38 than any other value of k in the range 1 < k < 100. Hence, 38 is considered for this sequence such that digit sum of 38^n is prime. %C A230665 38 generates 37 primes in that range of k. The 404 is the next better prime generator, with 40 primes. Next two records are 278249 with 43 primes and 458635073 with 45. (No more records to 10^9.) - _Charles R Greathouse IV_, Jan 21 2014 %H A230665 K. D. Bajpai, <a href="/A230665/b230665.txt">Table of n, a(n) for n = 1..4000</a> %e A230665 a(3)= 41: 38^5= 79235168: The digital sum= 7+9+2+3+5+1+6+8= 41 which is prime. %e A230665 a(6)= 67: 38^8= 4347792138496: The digital sum= 4+3+4+7+7+9+2+1+3+8+4+9+6= 67 which is prime. %p A230665 with(StringTools):KD := proc() local a,b; a:= 38^n ;b:=add( i,i = convert((a), base, 10))(a);if isprime(b) then return (b);fi;end: seq(KD(),n=1..500); %t A230665 Select[Table[Total[IntegerDigits[38^k]], {k,100}], PrimeQ] %o A230665 (PARI) list(maxx)={cnt=0;q=38;new=1;n=1;while(n<maxx,new=new*q; %o A230665 myval=sumdigits(new);if(isprime(myval), print(myval);cnt++); n++); } \\ _Bill McEachen_, Nov 10 2013 %Y A230665 Cf. A007953 (digit sum of n). %Y A230665 Cf. A062604 (primes: 38^n-37^n). %Y A230665 Cf. A175527 (digit sum of 13^n). %K A230665 nonn,base,less %O A230665 1,1 %A A230665 _K. D. Bajpai_, Oct 27 2013