This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230695 #15 Mar 22 2021 15:00:12 %S A230695 1,1,2,6,24,109,11,588,132,3654,1386,26125,13606,589,209863,139714, %T A230695 13303,1876502,1508756,243542,18441367,17429745,3953529,92159, %U A230695 197776850,214536114,63334182,3354454,2297242583,2815529811,1020982869,93265537,28739304385 %N A230695 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the consecutive step pattern up, down, down, up; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-2)/3)), read by rows. %H A230695 Alois P. Heinz, <a href="/A230695/b230695.txt">Rows n = 0..100, flattened</a> %e A230695 T(5,1) = 11: 14325, 15324, 15423, 24315, 25314, 25413, 34215, 35214, 35412, 45213, 45312. %e A230695 T(8,2) = 589: 14327658, 14328657, 14328756, ..., 78635412, 78645213, 78645312. %e A230695 Triangle T(n,k) begins: %e A230695 : 0 : 1; %e A230695 : 1 : 1; %e A230695 : 2 : 2; %e A230695 : 3 : 6; %e A230695 : 4 : 24; %e A230695 : 5 : 109, 11; %e A230695 : 6 : 588, 132; %e A230695 : 7 : 3654, 1386; %e A230695 : 8 : 26125, 13606, 589; %e A230695 : 9 : 209863, 139714, 13303; %e A230695 : 10 : 1876502, 1508756, 243542; %e A230695 : 11 : 18441367, 17429745, 3953529, 92159; %p A230695 b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand( %p A230695 add(b(u-j, o+j-1, [1, 3, 4, 1][t]), j=1..u)+ %p A230695 add(b(u+j-1, o-j, 2)*`if`(t=4, x, 1), j=1..o))) %p A230695 end: %p A230695 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 1)): %p A230695 seq(T(n), n=0..15); %t A230695 b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Expand[ %t A230695 Sum[b[u - j, o + j - 1, {1, 3, 4, 1}[[t]]], {j, 1, u}] + %t A230695 Sum[b[u + j - 1, o - j, 2]*If[t == 4, x, 1], {j, 1, o}]]]; %t A230695 T[n_] := CoefficientList[b[n, 0, 1], x]; %t A230695 T /@ Range[0, 15] // Flatten (* _Jean-François Alcover_, Mar 22 2021, after _Alois P. Heinz_ *) %Y A230695 Column k=0 gives: A177519. %Y A230695 Row sums give: A000142. %Y A230695 Cf. A242783, A242784, A295987. %K A230695 nonn,tabf %O A230695 0,3 %A A230695 _Alois P. Heinz_, Oct 27 2013