A230757
T(n,k)=Number of (n+3)X(k+3) 0..2 arrays x(i,j) with each element diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 3, and upper left element zero.
Original entry on oeis.org
12, 192, 192, 2700, 5544, 2700, 31212, 178608, 178608, 31212, 363312, 4838400, 13305708, 4838400, 363312, 4120752, 129731328, 820317888, 820317888, 129731328, 4120752, 46949808, 3423037464, 51048476748, 116879941620, 51048476748
Offset: 1
Some solutions for n=1 k=4
..0..0..2..2..0..0..0....0..2..0..0..1..1..2....0..1..0..2..1..0..2
..1..1..0..0..1..1..2....0..1..2..2..1..0..2....2..1..0..2..1..0..2
..0..2..0..1..1..0..2....0..1..2..2..1..0..2....0..0..2..2..1..0..2
..1..2..0..2..2..0..2....0..2..0..0..1..0..2....2..2..1..0..2..0..2
A230735
Number of (n+3)X(n+3) 0..2 black square subarrays x(i,j) with each element diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 3, and upper left element zero.
Original entry on oeis.org
2, 66, 2106, 320970, 43853402, 36695929036, 26681634560690, 121531720205091748, 479398570293769095556, 11869733818244916838154264
Offset: 1
Some solutions for n=3
..x..0..x..0..x..1....x..0..x..1..x..0....x..0..x..2..x..2....x..0..x..2..x..2
..2..x..1..x..2..x....1..x..2..x..1..x....2..x..1..x..0..x....2..x..1..x..0..x
..x..2..x..1..x..1....x..2..x..1..x..2....x..2..x..0..x..1....x..1..x..0..x..1
..0..x..1..x..2..x....1..x..0..x..0..x....0..x..2..x..2..x....2..x..2..x..2..x
..x..1..x..0..x..1....x..0..x..1..x..2....x..1..x..2..x..1....x..0..x..2..x..1
..0..x..2..x..0..x....2..x..2..x..0..x....0..x..1..x..0..x....2..x..1..x..0..x
A230736
Number of (n+3)X(2+3) 0..2 black square subarrays x(i,j) with each element diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 3, and upper left element zero.
Original entry on oeis.org
8, 66, 244, 2016, 6576, 54138, 173428, 1427040, 4558536, 37506738, 119758148, 985334832, 3145930352, 25883741898, 82639468964, 679931791152, 2170826159272, 17860880147874, 57024624645332, 469180811419968, 1497958570841456
Offset: 1
Some solutions for n=3
..x..0..x..0..x....x..0..x..1..x....x..0..x..2..x....x..0..x..0..x
..2..x..1..x..1....1..x..2..x..0....2..x..1..x..0....2..x..1..x..2
..x..1..x..2..x....x..2..x..1..x....x..1..x..1..x....x..2..x..2..x
..0..x..0..x..1....1..x..0..x..0....0..x..2..x..0....0..x..0..x..1
..x..0..x..2..x....x..2..x..2..x....x..0..x..2..x....x..1..x..0..x
..2..x..1..x..1....1..x..1..x..1....2..x..1..x..1....0..x..2..x..2
A230737
Number of (n+3)X(4+3) 0..2 black square subarrays x(i,j) with each element diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 3, and upper left element zero.
Original entry on oeis.org
102, 2016, 16536, 320970, 2382398, 46599682, 342031378, 6692078688, 49068380730, 959928337654, 7037607186036, 137677370665624, 1009342929539188, 19745940646875492, 144761390761971996, 2831990839783724564
Offset: 1
Some solutions for n=3
..x..0..x..1..x..1..x....x..0..x..0..x..0..x....x..0..x..1..x..1..x
..1..x..0..x..2..x..2....2..x..1..x..1..x..1....1..x..0..x..2..x..2
..x..2..x..2..x..0..x....x..2..x..0..x..2..x....x..2..x..2..x..0..x
..2..x..1..x..1..x..2....1..x..0..x..0..x..1....0..x..2..x..1..x..2
..x..0..x..0..x..1..x....x..0..x..1..x..2..x....x..1..x..0..x..1..x
..2..x..2..x..0..x..0....2..x..2..x..0..x..1....0..x..2..x..2..x..0
A230738
Number of (n+3)X(6+3) 0..2 black square subarrays x(i,j) with each element diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 3, and upper left element zero.
Original entry on oeis.org
1172, 54138, 1025430, 46599682, 801845362, 36695929036, 625553036008, 28644012159382, 487784854592488, 22335960353679258, 380324726478587580, 17415157060199286942, 296532282288946047888, 13578285711710490028400
Offset: 1
Some solutions for n=3
..x..0..x..0..x..2..x..0..x....x..0..x..0..x..2..x..2..x
..1..x..1..x..0..x..2..x..1....2..x..1..x..0..x..0..x..1
..x..2..x..0..x..1..x..2..x....x..2..x..0..x..1..x..2..x
..0..x..2..x..1..x..0..x..2....0..x..2..x..2..x..0..x..1
..x..1..x..1..x..2..x..0..x....x..1..x..2..x..1..x..2..x
..0..x..0..x..1..x..1..x..2....0..x..0..x..1..x..1..x..1
Showing 1-5 of 5 results.
Comments