cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A230757 T(n,k)=Number of (n+3)X(k+3) 0..2 arrays x(i,j) with each element diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 3, and upper left element zero.

Original entry on oeis.org

12, 192, 192, 2700, 5544, 2700, 31212, 178608, 178608, 31212, 363312, 4838400, 13305708, 4838400, 363312, 4120752, 129731328, 820317888, 820317888, 129731328, 4120752, 46949808, 3423037464, 51048476748, 116879941620, 51048476748
Offset: 1

Views

Author

R. H. Hardin, Oct 29 2013

Keywords

Comments

Table starts
.......12.........192............2700..............31212................363312
......192........5544..........178608............4838400.............129731328
.....2700......178608........13305708..........820317888...........51048476748
....31212.....4838400.......820317888.......116879941620........17027460691212
...363312...129731328.....51048476748.....17027460691212......5769362600920812
..4120752..3423037464...3154520054700...2446111719135732...1928867953682733132
.46949808.90231813552.194576103540300.350956390609736652.645610139671314494208

Examples

			Some solutions for n=1 k=4
..0..0..2..2..0..0..0....0..2..0..0..1..1..2....0..1..0..2..1..0..2
..1..1..0..0..1..1..2....0..1..2..2..1..0..2....2..1..0..2..1..0..2
..0..2..0..1..1..0..2....0..1..2..2..1..0..2....0..0..2..2..1..0..2
..1..2..0..2..2..0..2....0..2..0..0..1..0..2....2..2..1..0..2..0..2
		

Formula

Empirical for column k:
k=1: [order 15]
k=2: [order 36]
T(n,k)=3*A230708(n,k)*A230739(n,k)

A230735 Number of (n+3)X(n+3) 0..2 black square subarrays x(i,j) with each element diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 3, and upper left element zero.

Original entry on oeis.org

2, 66, 2106, 320970, 43853402, 36695929036, 26681634560690, 121531720205091748, 479398570293769095556, 11869733818244916838154264
Offset: 1

Views

Author

R. H. Hardin, Oct 28 2013

Keywords

Comments

Diagonal of A230739

Examples

			Some solutions for n=3
..x..0..x..0..x..1....x..0..x..1..x..0....x..0..x..2..x..2....x..0..x..2..x..2
..2..x..1..x..2..x....1..x..2..x..1..x....2..x..1..x..0..x....2..x..1..x..0..x
..x..2..x..1..x..1....x..2..x..1..x..2....x..2..x..0..x..1....x..1..x..0..x..1
..0..x..1..x..2..x....1..x..0..x..0..x....0..x..2..x..2..x....2..x..2..x..2..x
..x..1..x..0..x..1....x..0..x..1..x..2....x..1..x..2..x..1....x..0..x..2..x..1
..0..x..2..x..0..x....2..x..2..x..0..x....0..x..1..x..0..x....2..x..1..x..0..x
		

A230736 Number of (n+3)X(2+3) 0..2 black square subarrays x(i,j) with each element diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 3, and upper left element zero.

Original entry on oeis.org

8, 66, 244, 2016, 6576, 54138, 173428, 1427040, 4558536, 37506738, 119758148, 985334832, 3145930352, 25883741898, 82639468964, 679931791152, 2170826159272, 17860880147874, 57024624645332, 469180811419968, 1497958570841456
Offset: 1

Views

Author

R. H. Hardin, Oct 28 2013

Keywords

Comments

Column 2 of A230739

Examples

			Some solutions for n=3
..x..0..x..0..x....x..0..x..1..x....x..0..x..2..x....x..0..x..0..x
..2..x..1..x..1....1..x..2..x..0....2..x..1..x..0....2..x..1..x..2
..x..1..x..2..x....x..2..x..1..x....x..1..x..1..x....x..2..x..2..x
..0..x..0..x..1....1..x..0..x..0....0..x..2..x..0....0..x..0..x..1
..x..0..x..2..x....x..2..x..2..x....x..0..x..2..x....x..1..x..0..x
..2..x..1..x..1....1..x..1..x..1....2..x..1..x..1....0..x..2..x..2
		

Formula

Empirical: a(n) = 31*a(n-2) -126*a(n-4) +42*a(n-6) +79*a(n-8) -a(n-10) +8*a(n-12)

A230737 Number of (n+3)X(4+3) 0..2 black square subarrays x(i,j) with each element diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 3, and upper left element zero.

Original entry on oeis.org

102, 2016, 16536, 320970, 2382398, 46599682, 342031378, 6692078688, 49068380730, 959928337654, 7037607186036, 137677370665624, 1009342929539188, 19745940646875492, 144761390761971996, 2831990839783724564
Offset: 1

Views

Author

R. H. Hardin, Oct 28 2013

Keywords

Comments

Column 4 of A230739

Examples

			Some solutions for n=3
..x..0..x..1..x..1..x....x..0..x..0..x..0..x....x..0..x..1..x..1..x
..1..x..0..x..2..x..2....2..x..1..x..1..x..1....1..x..0..x..2..x..2
..x..2..x..2..x..0..x....x..2..x..0..x..2..x....x..2..x..2..x..0..x
..2..x..1..x..1..x..2....1..x..0..x..0..x..1....0..x..2..x..1..x..2
..x..0..x..0..x..1..x....x..0..x..1..x..2..x....x..1..x..0..x..1..x
..2..x..2..x..0..x..0....2..x..2..x..0..x..1....0..x..2..x..2..x..0
		

Formula

Empirical: a(n) = 185*a(n-2) -6851*a(n-4) +145707*a(n-6) -2849231*a(n-8) +30720183*a(n-10) -36007996*a(n-12) -743385180*a(n-14) +287330815*a(n-16) +8627923017*a(n-18) -12118273932*a(n-20) -29408445279*a(n-22) +45675171837*a(n-24) -13807146112*a(n-26) -2411662568755*a(n-28) +3802259458200*a(n-30) +3456476952882*a(n-32) +4249525502473*a(n-34) -5769431443156*a(n-36) -7037014662528*a(n-38) +2632063276930*a(n-40) +18416679443602*a(n-42) +9430615399362*a(n-44) +259673859628*a(n-46) +64576080600*a(n-48) +325261872*a(n-50)

A230738 Number of (n+3)X(6+3) 0..2 black square subarrays x(i,j) with each element diagonally or antidiagonally next to at least one element with value (x(i,j)+1) mod 3, and upper left element zero.

Original entry on oeis.org

1172, 54138, 1025430, 46599682, 801845362, 36695929036, 625553036008, 28644012159382, 487784854592488, 22335960353679258, 380324726478587580, 17415157060199286942, 296532282288946047888, 13578285711710490028400
Offset: 1

Views

Author

R. H. Hardin, Oct 28 2013

Keywords

Comments

Column 6 of A230739

Examples

			Some solutions for n=3
..x..0..x..0..x..2..x..0..x....x..0..x..0..x..2..x..2..x
..1..x..1..x..0..x..2..x..1....2..x..1..x..0..x..0..x..1
..x..2..x..0..x..1..x..2..x....x..2..x..0..x..1..x..2..x
..0..x..2..x..1..x..0..x..2....0..x..2..x..2..x..0..x..1
..x..1..x..1..x..2..x..0..x....x..1..x..2..x..1..x..2..x
..0..x..0..x..1..x..1..x..2....0..x..0..x..1..x..1..x..1
		
Showing 1-5 of 5 results.