This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230772 #23 Mar 18 2019 08:10:23 %S A230772 0,1,1,1,2,1,1,1,2,2,2,2,3,2,2,3,3,2,2,2,3,3,3,2,3,3,3,4,5,4,4,4,4,4, %T A230772 4,5,5,4,4,5,6,5,5,4,5,5,5,5,6,6,6,6,7,6,6,7,7,7,7,7,7,6,6,6,7,7,7,7, %U A230772 8,8,8,8,9,8,8,9,9,9,9,8,8,8,8,7,8,8,8,9,9,8,8,9,10,10,10 %N A230772 Number of primes in the half-open interval [n, 3*n/2). %C A230772 Suggested by Bertrand's postulate (actually a theorem): for all x > 1, there is a prime number between x and 2x (see related references and links mentioned in A060715, A166968 and A143227). %C A230772 For all n > 1, a(n)>=1 (that is, there is always a prime between n and 3*n/2); this can be seen using the stronger result proved by Jitsuro Nagura in 1952: for n >= 25, there is always a prime between n and (1 + 1/5)n. %C A230772 Successive terms vary by no more than +/- one unit. %H A230772 Jean-Christophe Hervé, <a href="/A230772/b230772.txt">Table of n, a(n) for n = 1..6667</a> %H A230772 Jitsuro Nagura, <a href="https://doi.org/10.3792/pja/1195570997">On the interval containing at least one prime number</a>, Proc. Japan Acad. 28, 1952, 177-181. %F A230772 a(n) = sum(A010051(n+k): 0<=k<3*n/2). %F A230772 a(n) = A000720(ceiling(1.5*n)-1) - A000720(n-1). %e A230772 a(29)=5 since five primes (29,31,37,41,43) are located between 29 and 43.5. %t A230772 a[n_]:=PrimePi[Ceiling[1.5*n]-1]-PrimePi[n-1]; Table[a[n], {n, 2, 100}] %o A230772 (R) %o A230772 nvalues <- 1000 %o A230772 A <- vector('numeric', nvalues) %o A230772 A[1] <- 0 %o A230772 # primepi = table of the primepi sequence A000720 %o A230772 for(i in 2:nvalues) A[i] <- primepi[ceiling(1.5*i)-1]-primepi[i-1] %Y A230772 Cf. A060715, A166968, A143227, A000720, A010051. %K A230772 nonn,easy %O A230772 1,5 %A A230772 _Jean-Christophe Hervé_, Oct 30 2013