cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230774 Number of primes less than first prime above square root of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Keywords

Comments

Or repeat k (prime(k)^2 - prime(k-1)^2) times, with prime(0) set to 0 for k = 1.
This sequence is useful to compute A055399 for prime numbers.

Examples

			a(5) = a(6) = a(7) = a(8) = a(9) = 2 because prime(1) = 2 < sqrt(5 to 9) <= prime(2) = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[1 + PrimePi[Sqrt[n-1]], {n, 100}] (* Alonso del Arte, Nov 01 2013 *)
  • Python
    from math import isqrt
    from sympy import primepi
    def A230774(n): return primepi(isqrt(n-1))+1 # Chai Wah Wu, Nov 04 2024

Formula

Repeat 1 prime(1)^2 = 4 times; for k>1, repeat k (prime(k)^2-prime(k-1)^2) = A050216(k-1) times.
a(n) - A056811(n) = characteristic function of squares of primes.