cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230812 Smallest squarefree side lengths of primitive integer Soddyian triangles.

Original entry on oeis.org

5, 13, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, 685, 761, 1013, 1105, 1201, 1301, 1405, 1513, 1741, 1861, 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785, 3961, 4141, 4513, 4705, 5101, 5305, 5513, 5941
Offset: 1

Views

Author

Frank M Jackson, Oct 30 2013

Keywords

Comments

A Soddyian triangle is a triangle whose outer Soddy circle has degenerated into a straight line. Its side lengths are related by the equation 1/sqrt(s-c) = 1/sqrt(s-b)+1/sqrt(s-a) where the sides a <= b <= c and s is the semiperimeter. It is Heronian. The smallest side length of a primitive Soddyian triangle is given as a = n^2((m+n)^2+m^2) for integers m >= n > 0 with GCD(m, n) = 1. If this side length is squarefree, then n = 1 and (m+1)^2+m^2 has to be squarefree. a(n) is the ordered sequence of squarefree integers t of the form t = (m+1)^2+m^2. Note that t uniquely determines the primitive Soddyian triple whenever the smallest side length is squarefree.

Examples

			a(3)=41 because the triangle with sides (41, 416, 425) is a primitive Soddyian triangles, 41 is squarefree and is the 3rd occurrence of such a squarefree integer.
		

Crossrefs

Supersequence of A027862.

Programs

  • Mathematica
    lst = {}; Do[If[SquareFreeQ[(m+1)^2+m^2], AppendTo[lst, (m+1)^2+m^2]], {m, 1, 100}]; lst
  • PARI
    select(issquarefree, vector(1000,m,(m+1)^2+m^2)) \\ Charles R Greathouse IV, Oct 31 2013

Formula

Squarefree integers of the form (m+1)^2+m^2 for any integer m > 0.