A230812 Smallest squarefree side lengths of primitive integer Soddyian triangles.
5, 13, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, 685, 761, 1013, 1105, 1201, 1301, 1405, 1513, 1741, 1861, 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785, 3961, 4141, 4513, 4705, 5101, 5305, 5513, 5941
Offset: 1
Keywords
Examples
a(3)=41 because the triangle with sides (41, 416, 425) is a primitive Soddyian triangles, 41 is squarefree and is the 3rd occurrence of such a squarefree integer.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- F. M. Jackson, Soddyian triangles, Forum Geom. 13 (2013), 1-6.
Crossrefs
Supersequence of A027862.
Programs
-
Mathematica
lst = {}; Do[If[SquareFreeQ[(m+1)^2+m^2], AppendTo[lst, (m+1)^2+m^2]], {m, 1, 100}]; lst
-
PARI
select(issquarefree, vector(1000,m,(m+1)^2+m^2)) \\ Charles R Greathouse IV, Oct 31 2013
Formula
Squarefree integers of the form (m+1)^2+m^2 for any integer m > 0.
Comments