This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A230820 #17 Feb 16 2014 19:50:44 %S A230820 3,2,5,2,13,7,2,3,23,17,2,3,5,151,31,2,3,31,17,173,73,2,3,5,41,29,233, %T A230820 107,2,3,5,7,67,59,757,127,2,3,5,71,37,83,257,937,257,2,3,5,7,107,43, %U A230820 109,373,1093,313,2,3,5,7,73,157,61,701,409,1249,443 %N A230820 Table, read by antidiagonals, of palindromic primes in base b expressed in decimal. %e A230820 \r %e A230820 b\ %e A230820 .2.3...5...7...17...31...73..107..127...257...313...443..1193..1453..1571.=A016041 %e A230820 .3.2..13..23..151..173..233..757..937..1093..1249..1429..1487..1667..1733.=A029971 %e A230820 .4.2...3...5...17...29...59..257..373...409...461...509...787...839...887.=A029972 %e A230820 .5.2...3..31...41...67...83..109..701...911..1091..1171..1277..1327..1667.=A029973 %e A230820 .6.2...3...5....7...37...43...61...67...191...197..1297..1627..1663..1699.=A029974 %e A230820 .7.2...3...5...71..107..157..257..271...307..2549..2647..2801..3347..3697.=A029975 %e A230820 .8.2...3...5....7...73...89...97..113...211...227...251...349...373...463.=A029976 %e A230820 .9.2...3...5....7..109..127..173..191...227...337...373...419...601...619.=A029977 %e A230820 10.2...3...5....7...11..101..131..151...181...191...313...353...373...383.=A002385 %e A230820 11.2...3...5....7..199..277..421..443...499...521...587...643...709...743.=A029978 %e A230820 12.2...3...5....7...11...13..157..181...193...229...241...277...761...773.=A029979 %e A230820 ... %e A230820 inf..2..3..5..7..11..13..17..19..23..29..31..37..41..43..47..53..59..61...=A000040 %p A230820 A230820 := proc(b,n) %p A230820 option remember; %p A230820 local a,dgs ; %p A230820 if n = 1 then %p A230820 if b = 2 then %p A230820 return 3; %p A230820 else %p A230820 return 2; %p A230820 end if; %p A230820 else %p A230820 for a from procname(b,n-1)+1 do %p A230820 if isprime(a) then %p A230820 ispal := true ; %p A230820 dgs := convert(a,base,b) ; %p A230820 for i from 1 to nops(dgs)/2 do %p A230820 if op(i,dgs) <> op(-i,dgs) then %p A230820 ispal := false; %p A230820 end if; %p A230820 end do: %p A230820 if ispal then %p A230820 return a; %p A230820 end if; %p A230820 end if; %p A230820 end do: %p A230820 end if; %p A230820 end proc: %p A230820 for b from 2 to 9 do %p A230820 for n from 1 to 9 do %p A230820 printf("%3d ",A230820(b,n)) ; %p A230820 end do: %p A230820 printf("\n") ; %p A230820 end do; # _R. J. Mathar_, Feb 16 2014 %t A230820 palQ[n_Integer, base_Integer] := Module[{idn = IntegerDigits[ n, base]}, idn == Reverse@ idn]; Table[Select[Prime@Range@500, palQ[#, k + 1] &][[b - k + 1]], {b, 11}, {k, b, 1, -1}] // Flatten %Y A230820 Cf. A000040, A016041, A029971, A029972, A029973, A029974, A029975, A029976, A029977, A002385, A029978, A029979, A029980, A029981, A029982, A029732, A182231. %K A230820 nonn,base,easy,tabl %O A230820 1,1 %A A230820 _Robert G. Wilson v_, Oct 30 2013